VDATUM FOR PUGET SOUND: GENERATION OF THE GRID AND POPULATION WITH TIDAL DATUMS AND SEA SURFACE TOPOGRAPHY

Silver Spring, Maryland January 2004



**NOCC** National Oceanic and Atmospheric Administration

U.S. DEPARTMENT OF COMMERCE National Ocean Service Coast Survey Development Laboratory Office of Coast Survey National Ocean Service National Oceanic and Atmospheric Administration U.S. Department of Commerce

The Office of Coast Survey (CS) is the Nation's only official chartmaker. As the oldest United States scientific organization, dating from 1807, this office has a long history. Today it promotes safe navigation by managing the National Oceanic and Atmospheric Administration's (NOAA) nautical chart and oceanographic data collection and information programs.

There are four components of CS:

The Coast Survey Development Laboratory develops new and efficient techniques to accomplish Coast Survey missions and to produce new and improved products and services for the maritime community and other coastal users.

The Marine Chart Division collects marine navigational data to construct and maintain nautical charts, Coast Pilots, and related marine products for the United States.

The Hydrographic Surveys Division directs programs for ship and shore-based hydrographic survey units and conducts general hydrographic survey operations.

The Navigation Services Division is the focal point for Coast Survey customer service activities, concentrating predominantly on charting issues, fast-response hydrographic surveys and Coast Pilot updates.

# VDATUM FOR PUGET SOUND: GENERATION OF THE GRID AND POPULATION WITH TIDAL DATUMS AND SEA SURFACE TOPOGRAPHY

Kurt W. Hess Office of Coast Survey

Stephen A. White National Geodetic Survey

January 2004



# **NOCO** National Oceanic and Atmospheric Administration

U.S. DEPARTMENT OF COMMERCE Donald Evans, Secretary National Oceanic and Atmospheric Administration Conrad C . Lautenbacher, Jr., VADM USN (Ret.), Under Secretary

Office of Coast Survey Captain Roger L. Parsons National Ocean Service Richard W. Spinrad, Ph.D. Assistant Administrator

Coast Survey Development Laboratory Bruce B. Parker

# NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

# TABLE OF CONTENTS

| LIST OF FIGURES                                             | iv |
|-------------------------------------------------------------|----|
| LIST OF TABLES                                              | iv |
| ABSTRACT                                                    | v  |
| 1. INTRODUCTION                                             | 1  |
| 2. TIDAL DATUM FIELDS                                       | 1  |
| 3. DIGITIZED SHORELINE                                      | 1  |
| 4. THE BOUNDING POLYGON                                     | 5  |
| 5. VDATUM GRID POINTS                                       | 6  |
| 6. POPULATION OF THE VDATUM GRID WITH TIDAL DATUMS          | 8  |
| 7. COMPARISON OF VDATUM GRIDDED VALUES WITH OBSERVED DATUMS | 9  |
| 8. SUMMARY OF THE VDATUM GRID GENERATION PROCESS            | 9  |
| 9. GENERATION OF THE GRIDDED TOPOGRAPHY OF THE SEA SURFACE  | 10 |
| ACKNOWLEDGEMENTS                                            | 11 |
| REFERENCES                                                  | 12 |
| APPENDIX A. COPY OF AMS PAPER                               | 13 |
| APPENDIX B. TIDE STATIONS AND TIDAL DATUMS                  | 19 |
| APPENDIX C. NOS TIDE STATION NUMBERS AND NAMES              | 21 |
| APPENDIX D. SUMMARY OF COMPARISONS WITH CO-OPS STATION DATA | 23 |
| APPENDIX E. SUMMARY OF COMPARISONS WITH NGS BENCHMARK DATA  | 25 |

# LIST OF FIGURES

| Figure 1. Sample coastline in Puget Sound showing the NGDC shoreline (thin line) and the newer, EVS shoreline (thick line). In this figure, the maximum difference in position is approximately 0.1 nmi. 2                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2. Initial Puget Sound EVS shoreline for MHW as extracted from NOS Chart No. 18440.<br>Note the presence of numerous small lakes; the next figure shores the revised EVS shoreline with the lakes removed                                                                                                              |
| Figure 3. Digitized shoreline for Puget Sound from NOS Chart No. 18440, revised to exclude lakes                                                                                                                                                                                                                              |
| Figure 4. The mainland polygon as formed by a closed boundary segment                                                                                                                                                                                                                                                         |
| Figure 5. Line segment with numbered points that defines a river intersecting the chart border 4                                                                                                                                                                                                                              |
| Figure 6. Bounding polygon (solid line) and mainland polygon (gray area) for Puget Sound 5                                                                                                                                                                                                                                    |
| Figure 7. Schematic showing the VDatum grid points (+ symbols), an 'A cell' and a 'B cell'. The A cell is centered on the VDatum grid point, while the corners of the B cell are the VDatum points. The symbol * denotes a corner of an A cell, <i>i</i> is the longitude index, and <i>j</i> is the latitude index           |
| Figure 8. Portion of the VDatum grid for Puget Sound. The small dark squares show locations of non-null values and the '+' symbols show locations of null values. The curved line shows the MHW coastline, white areas show water (i.e., locations where a non-null tidal datum value will be found), and gray areas are land |
| Figure 9. VDatum grid points for Puget Sound. The areas with null values are shown in gray, and the areas covered by non-null tidal datum values are shown as white within the gray area 8                                                                                                                                    |
| Figure 10. The TSS field (m) for Puget Sound and the locations of the tide stations (denoted by filled triangles) used to generate the field of values                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                               |

# LIST OF TABLES

| Table 1. Summary of Steps in Production of the VDatum Grid         | 9   |
|--------------------------------------------------------------------|-----|
| Table 2. Location and elevation information for NOAA tide stations | .10 |

#### ABSTRACT

The generation and population of the VDatum tidal grid for Puget Sound, Washington, is discussed. The VDatum grid has a spacing of approximately 0.1 nautical miles. Points in the grid are first determined to be either land or water, depending on their location relative to a digitized coastline. Land points are given null values. For water points, the tidal datum fields are searched to provide a value. The tidal datum fields were generated by spatial interpolation, taking landwater boundaries into account, of datum values at 69 historical stations. The sea surface topography, or difference between local mean sea level and the NAVD 88 geopotential surface, is generated by a minimum curvature algorithm using data at 11 tide stations.

**Key Words**: tides, tidal datums, Puget Sound, North American Vertical Datum of 1988, mean sea level, spatial interpolation, coast line.

## **1. INTRODUCTION**

The National Ocean Service (NOS) is developing a vertical datum transformation tool called VDatum (Milbert, 2002; Parker, 2002). For previous VDatum grids (Hess, 2001), a tide model was used to determine which VDatum points represented water and which represented land. If a Vdatum point was within a specified distance from a tidal data point, the point was considered to be water, and the datum values for that point were taken from the tide model. However, points in water areas where there were no tidal values were left unfilled. A new approach for the generation and population of the VDatum grid is described herein and applied to Puget Sound. In the new approach, the VDatum grid points are first determined to be land or water, based on their relationship to the digitized coastline, and then the tidal data are searched for a value.

### 2. TIDAL DATUM FIELDS

Tidal datum fields for Puget Sound, Washington, were generated on a 0.125 nautical miles (nmi) tidal grid using TCARI (Hess, 2002; 2003). The grid was generated using NOAA's National Geophysical Data Center's (NGDC's) digitized, high-resolution shoreline. The method for generation of the datum fields is discussed in Hess and Gill (2003) (see Appendix A), but the final tidal datum fields described here were re-generated using tidal values updated by NOS' Center for Operational Oceanographic Products and Services (CO-OPS) to the most recent National Tidal Datum Epoch, 1983-2001 (see Appendix B).

## **3. DIGITIZED SHORELINE**

Initially, the NGDC shoreline was used (as it was for the tidal datum fields) to create the VDatum grid. However, a more recent digitized shoreline is available from CSDL's Extracted Vector Shoreline (EVS) project. The new shoreline differs from the older shoreline (Figure 1) due to physical changes in the coast and because newer charts have been updated using geographical positions revised using GPS. Both sets of data use the NAD 83 horizontal datum.

The EVS shoreline for Mean High Water (MHW) from NOS Chart 18440 ('Puget Sound'), valid for 2002, was reformatted (using rd\_evs.f), and subject to the concatenation process (using concat.f) to connect short line segments. This shoreline is shown in Figure 2. In the EVS data file, geographic positions are in decimal degrees, with six places to the right of the decimal point, and line segments are separated by records containing two zeros. Notice that chart borders were included as 'coastline' in the EVS for this chart, as were some bridges. A digitized Mean Lower Low Water (MLLW) shoreline is also available.

Since the original shoreline data contained numerous small lakes, which were not needed for the project, they were manually removed to create a new digitized shoreline. That shoreline is shown in Figure 3.



Figure 1. Sample coastline in Puget Sound showing the NGDC shoreline (thin line) and the newer, EVS shoreline (thick line). In this figure, the maximum difference in position is approximately 0.1 nmi.



Figure 2. Initial Puget Sound EVS shoreline for MHW as extracted from NOS Chart No. 18440. Note the presence of numerous small lakes; the next figure shores the revised EVS shoreline with the lakes removed.



Figure 3. Digitized shoreline for Puget Sound from NOS Chart No. 18440, revised to exclude lakes.

The next step was to create the 'mainland' polygon, a single, continuous, closed (i.e., with matching end points) line segment that encloses all the land area in the chart except for islands. The mainland polygon (Figure 4) is used as a reference landmass when determining whether other closed line segments are islands or lakes. The polygon was created in several steps. The first step was to manually remove the bridges in the EVS that created a discontinuous body of water for the Sound. The bridges were in the Hood Canal at Port Gamble, in the lower Sound at Tacoma, and at Bremerton. The removal was accomplished by inserting new segment end points, removing the points representing the bridges, and re-concatenating the resulting segments. Several other bridges were allowed to remain since they connected small islands with the mainland and did not cut off embayments from the Sound proper.

Following the removal of bridges, the next step was to move the southern chart boundary line further south and the eastern chart boundary line further east. The main problem with these boundaries was that some rivers, which themselves are part of the shoreline, intersected the boundaries (Figure 5), thereby creating a discontinuity along a border. The segments of these rivers closest to the boundaries were removed, and then the borders were moved down and to the right. The resulting mainland polygon is shown in Figure 4.



Figure 4. The mainland polygon as formed by a closed boundary segment.



Figure 5. Line segment with numbered points that defines a river intersecting the chart border.

The final step was to search the coastline file to identify islands and any remaining lakes using the mainland polygon. The points defining the mainland polygon were renumbered so that the points appear in counterclockwise (CCW) order (using program landolakes.f). Each remaining closed line segment was analyzed as follows. For the latitude of a point in the segment, the closest point at the same latitude in the mainland polygon was found. Since the mainland polygon's points are numbered CCW, the orientation of the mainland polygon indicates whether the segment is inside or outside the mainland polygon. If the line segment is inside the mainland polygon, it must enclose water (i.e., be a lake); if outside, the line segment must enclose land (i.e., be an island).

#### 4. THE BOUNDING POLYGON

Points in the VDatum grid were further constrained by allowing water, or non-null, tidal values only within a bounding polygon. The bounding polygon can be used, for example, to exclude tidal areas that may be within the coastline rectangle but for which no tidal data are available. The bounding polygon created for the Puget Sound region is shown in Figure 6.



Figure 6. Bounding polygon (solid line) and mainland polygon (gray area) for Puget Sound.

#### **5. VDATUM GRID POINTS**

The VDatum grid for the Puget Sound area was generated by a new program, vgridder.f, which is a modification of the TCARI grid program pa.f. Here, the grid origin is at *latitude*<sub>0</sub> and *longitude*<sub>0</sub>, and extends to *latitude*<sub>1</sub> and *longitude*<sub>1</sub>. The longitudinal spacing between points is *delx*, and the latitudinal spacing is *dely*. The VDatum grid consists of points as defined by

 $longitude_i = longitude_0 + (i - 1)*delx$  $latitude_j = latitude_0 + (j - 1)*dely$ 

where the index *i* denotes longitude and index *j* denotes latitude. The range of *i* is 1 to *imax* and the range of *j* is 1 to *jmax*, where

 $imax = (longitude_1 - longitude_0)/delx$ 

 $jmax = (latitude_1 - latitude_0)/dely$ 

For Puget Sound, the grid origin is at  $latitude_0 = 47.0167 (47^{\circ} 1' N)$ ,  $longitude_0 = -123.1833 (123^{\circ} 11' W)$ . The upper right corner is at  $latitude_1 = 48.1833 (48^{\circ} 11' N)$ ,  $longitude_1 = -122.1667 (122^{\circ} 10' W)$ . The spacing between points is delx = 0.0025 deg, dely = 0.0018 deg. This results in a distance between points of approximately 200 m (0.1 nmi).

Each point in the VDatum grid is designated as being either a null point (i.e., having no valid tidal datum transfer values) or a non-null point. Several steps were required to make that determination. Note that for the following discussion, an 'A cell' is defined as the rectangular area, centered on a VDatum grid point, whose corners are the centers of the four surrounding 'B cells' (Figure 7). A B cell is defined as the rectangular area whose corners are VDatum points.

In the first step in identifying null and non-null points, each point is checked to determine whether it lies within the bounding polygon. Then, if it does, the A cell in the VDatum grid is checked for the possibility of containing shoreline. Specifically, if any point along the border of the A cell lies within the water area, the VDatum point is designated as water, or non-null. This means that a VDatum point can lie a distance as much as  $\frac{1}{2}$  delx or  $\frac{1}{2}$  dely on the land side of the shoreline and still be considered to in the water.

Next, all B cells are checked to determine whether at least one corner is an non-null point; if so, then the B cell is considered to be water. Then, if a VDatum point is surrounded by four water B cells, that point is made non-null. Finally, one or more layers of water cells can be added to the B cells, and non-null VDatum points subsequently added if they are surrounded by water B cells. A sample of the VDatum grid with no added layers is shown in Figure 8, and the final grid for the entire Puget Sound area is shown in Figure 9.



Figure 7. Schematic showing the VDatum grid points (+ symbols), an 'A cell' and a 'B cell'. The A cell is centered on the VDatum grid point, while the corners of the B cell are the VDatum points. The symbol \* denotes a corner of an A cell, *i* is the longitude index, and *j* is the latitude index.



Figure 8. Portion of the VDatum grid for Puget Sound. The small dark squares show locations of non-null values and the '+' symbols show locations of null values. The curved line shows the MHW coastline, white areas show water (i.e., locations where a non-null tidal datum value will be found), and gray areas are land.



Figure 9. VDatum grid points for Puget Sound. The areas with null values are shown in gray, and the areas covered by non-null tidal datum values are shown as white within the gray area.

### 6. POPULATION OF THE VDATUM GRID WITH TIDAL DATUMS

The VDatum grid was populated (using the program vpop.f) with tidal datums using the fields previously generated using TCARI. For each non-null point in the VDatum grid, the tidal datum values within a circle of user-specified radius (here 0.02 deg) are selected and a weighted mean (using the inverse distance squared) is computed. After the non-null points are filled in the above manner, a search is made for unfilled points. For these locations, the datums from an adjacent, filled non-null point are used.

The input tidal datums are referenced to mean sea level (MSL). The output files, which are also referenced to MSL, are for the datums of mean higher high water (MHHW), MHW, mean low water (MLW), MLLW, mean tide level (MTL) and diurnal tide level (DTL).

## 7. COMPARISON OF VDATUM GRIDDED VALUES WITH OBSERVED DATUMS

Comparisons were made (using the program cp.f) of the tidal datum values for MHHW, MHW, MLW, and MLLW obtained from the VDatum gridded files and the datum values at both the water level stations and at the benchmarks. Both a root mean squared error (RMSE) and a standard deviation (SD) were computed for the four values at each location.

For the water level stations, the datums from the TideSheet052 file (Hess and Wilson, in prep.) that were available for generating the tidal datum fields were used (Appendix B). The comparison at 68 stations show a mean RMSE of 0.2 cm and a mean SD of 0.2 cm (Appendix C). The maximum RMSE, 2.9 cm, and maximum SD, 2.7 cm, occurred at the same location: station 9445293 at Pleasant Harbor on Hood Canal. Pleasant Harbor was too small a feature to be included in the tidal datum grid, so tidal datum values there were taken from adjacent VDatum points.

For the datums at the benchmarks, data from NGS were used. Note that the new method of generating the VDatum grid locations allows for non-null VDatum points to occur on land that is within a small distance (about equal to the grid point spacing) of the shoreline. The comparison at 67 locations show a mean RMSE of 0.6 cm and a mean SD of 0.6 cm (Appendix D). The maximum RMSE, 6.6 cm, and maximum SD, 2.6 cm, occurred at the same location: station 9444900 (or PID of TR0559) at Port Townsend. These errors apparently are due to the presence of older tidal data in the NGS database.

## 8. SUMMARY OF THE VDATUM GRID GENERATION PROCESS

The following table summarized the process of generating the grid and populating the grid with tidal datum values.

| Step | Action                                      | Computer<br>Program |
|------|---------------------------------------------|---------------------|
| 1    | Obtain digitized shoreline (preferably EVS) | rd evs.f            |
| 2    | Concatenate shoreline                       | concat.f            |
| 3    | Clean up segments                           | clean.f             |
| 4    | Remove bridges                              | -                   |
| 5    | Make closed, long segment                   | -                   |
| 6    | Make CCW, Remove Lakes                      | landolakes.f        |
| 7    | Create bounding polygon                     | -                   |
| 8    | Create grid points                          | vgridder.f          |
| 9    | Fill points with tidal datum values         | vpop.f              |
| 10   | Compare with CO-OPS and NGS data            | cp.f                |

| Table 1. St | ummary of | steps in | production | of the | VDatum grid. |
|-------------|-----------|----------|------------|--------|--------------|
|-------------|-----------|----------|------------|--------|--------------|

#### 9. GENERATION OF THE GRIDDED TOPOGRAPHY OF THE SEA SURFACE

VDatum uses a gridded Topography of the Sea Surface (TSS), which is the elevation of the North American Vertical Datum 1988 (NAVD 88) relative to local mean sea level (LMSL). The TSS required orthometric height relationships for the NOAA tide stations where elevation information has been compiled. The tide stations and associated elevation information used in the computation of the TSS are presented in Table 2. The average NAVD 88-to-MSL offset was -1.291 m, and the maximum difference in the offset values 0.17 m. All data are based on the most recent National Tidal Datum Epoch (1983-2001). A positive value means that the NAVD 88 reference value is further from the center of the Earth than the local mean sea-level surface. The values in the table show that the southern Sound (Tacoma, 9446484), MSL sits above NAVD 88 by 1.356 m, and in the northern Sound (Port Townsend, 9444900), MSL sits above NAVD 88 by 1.185 m. This difference probably reflects the fact that the southern Sound contains fresher, and therefore, less dense water, and so must have a higher sea surface to maintain a horizontal pressure balance.

| Station | Latitude | Longitude | LMSL  | <b>NAVD 88</b> | <b>NAVD 88</b> |
|---------|----------|-----------|-------|----------------|----------------|
| Number  |          |           |       |                | -LMSL          |
| 9446969 | 47.0600  | -122.9033 | 2.546 | 1.227          | -1.319         |
| 9445958 | 47.5617  | -122.6233 | 2.080 | 0.769          | -1.311         |
| 9447110 | 47.5850  | -122.3617 | 2.028 | 0.727          | -1.301         |
| 9447130 | 47.6050  | -122.3383 | 2.023 | 0.715          | -1.308         |
| 9445133 | 47.7483  | -122.7267 | 1.978 | 0.728          | -1.250         |
| 9447427 | 47.8133  | -122.3833 | 1.959 | 0.637          | -1.322         |
| 9444900 | 48.1117  | -122.7583 | 1.522 | 0.337          | -1.185         |
| 9446484 | 47.2667  | -122.4133 | 2.094 | 0.758          | -1.336         |
| 9447659 | 47.9800  | -122.2233 | 1.976 | 0.620          | -1.356         |
| 9449424 | 48.8633  | -122.7583 | 1.610 | 0.293          | -1.317         |
| 9444122 | 48.1400  | -123.4133 | 1.282 | 0.097          | -1.185         |

**Table 2.** Location and elevation information for NOAA tide stations.

A continuous surface (Figure 10) was produced by the minimum curvature interpolation method (Smith and Wessel, 1990), using data at the 11 tide stations in Table 2. This method creates a surface that honors the data as closely as possible. The grid point locations are the same as those used for the tidal datums. The maximum residuals value used was 0.00005 meters, and to control the amount of bowing on the interior and at the edges of the grid, internal and boundary tensions of 0.3 were utilized. The mean difference between the derived TSS grid and values at the tidal benchmarks where known relationships exist was 0.001 meters. It should be noted that tide stations leveled in NAVD 88 were not available in Hood Canal. Therefore, caution should be taken in using the TSS field in this area.



Figure 10. The TSS field (m) for Puget Sound and the locations of the tide stations (denoted by filled triangles) used to generate the field of values.

#### ACKNOWLEDGEMENTS

Digital coastline was provided by CSDL's Annie Raymond, working in the Extracted Vector Shoreline project begun by CSDL's Roger Johnson. Dennis Milbert of NOS' National Geodetic Survey (NGS) provided insights into generating, populating, and testing the VDatum grid, and provided NGS benchmark data.

#### REFERENCES

Hess, K. W, 2001: Generation of Tidal Datum Fields for Tampa Bay and the New York Bight. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, **NOAA Technical Report** NOS CS 11, 43 pp.

\_\_\_\_\_, 2002: Spatial interpolation of tidal data in irregularly-shaped coastal regions by numerical solution of Laplace's equation. **Estuarine, Coastal and Shelf Science**, 54(2), 175-192.

\_\_\_\_\_, 2003: Water level simulation in bays by spatial interpolation of tidal constituents, residual water levels, and datums. **Continental Shelf Research**, 23(5), 395-414.

\_\_\_\_\_, and S. K. Gill, 2003: Puget Sound Tidal Datums by Spatial Interpolation. **Proceedings**, **Fifth Conference on Coastal Atmospheric and Oceanic Prediction and Processes**. Am. Meteorological Soc., Seattle, August 6-8, 2003. Paper 6.1, 108 - 112 (see Appendix A).

\_\_\_\_\_, and R. Wilson (in preparation): TideSheet: An Astronomical Tide Database. 48 pp.

Milbert, D.G., 2002: Documentation for VDatum (and VDatum Tutorial); Vertical Datum Transformation Software. Ver. 1.06 (http://nauticalcharts.noaa.gov/bathytopo/vdatum.htm).

Parker, B. P., 2002: The integration of bathymetry, topography, and shoreline, and the vertical datum transformations behind it. **International Hydrographic Review** (3) 3 (November 2002).

Smith, W.H.F., and P. Wessel, 1990. Gridding with Continuous Curvature Splines in Tension. **Geophysics**, 55(3), 293 - 305.

#### APPENDIX A. COPY OF AMS PAPER

#### PUGET SOUND TIDAL DATUMS BY SPATIAL INTERPOLATION

Kurt W. Hess\* and Stephen K. Gill, National Ocean Service, NOAA

#### 1. INTRODUCTION

6.1

The National Ocean Service (NOS) of the National Oceanic and Atmospheric Administration (NOAA) requires tidal datum information such as mean high water (MHW) and mean lower low water (MLLW) to support nautical charting, navigational safety, shoreline photogrammetry, and marine boundary determination. In addition, tidal datum information is needed for referencing NOS' bathymetric data (which is referenced to MLLW) to any one of the other vertical elevation reference systems. A software tool under development at NOS called VDatum (Milbert, 2002) is designed to transform among approximately 30 vertical reference datums. To be applicable over coastal waters, VDatum requires tidal datum fields, where the field describes the two dimensional, horizontal variability of the datum elevation. Tidal datum fields for VDatum have been produced by NOS for Tampa Bay and coastal southern Louisiana, the New York Bight, central coastal California, and Delaware Bay (Hess, 2001). Once VDatum has been established for a region, data can be incorporated into integrated bathymetric-topographic Digital Elevation Models for use in coastal GIS applications (Parker et al., 2001; Gesch and Wilson, 2002). VDatum will also be needed for carrying out the kinematic-GPS hydrographic surveying that NOS is planning to implement.

NOS routinely collects water level observations at shore-based stations along U.S. coasts and analyzes them to produce tidal datums. As described above, there is an important need to obtain two-dimensional tidal datum fields that cover the coastal waters between the water level stations. This paper discusses a method for obtaining tidal datum fields in Puget Sound, Washington, by the method of spatial interpolation of tidal data.

#### 2. TIDES AND DATUMS

Tidal datums at water level stations are elevation values that are determined from a time series of observations. For stations located along the coasts of the U.S. (except for the Great Lakes), the analysis starts with the identification of all the tidal extrema (highs and lows) in the record, and continues with the selection (within a 25-hour time period) of the higher of the two highs and the lower of the two lows. If only one high water is present in the time period, it is categorized as a higher high. Thus, for high water (for example), each day has either a high and a higher high, or a single higher high. The average of all the highs and the higher highs is called the Mean High Water (MHW), and the average of just the higher highs is called the Mean Higher High Water (MHHW). The process for producing Mean Low Water (MLW) and MLLW from the low waters is similar. The average of the MHW and the MLW is called the Mean Tide Level (MTL) and the average of the MHHW and the MLLW is called the Diurnal Tidal Level (DTL). Mean Sea Level (MSL) is the average of the hourly water levels. Where MSL is not computed, the MTL or DTL can be used as approximations. For further information on tidal datums, see Gill and Schultz (2001).

Observations made in a limited time period are adjusted to represent equivalent values for a 19year National Tidal Datum Epoch (NTDE). The present NTDE of 1983-2001 was just implemented in April 2003 and replaced the previous 1960-1978 NTDE period. This recent epoch will give more accurate datums for locations where apparent sea levels are changing rapidly due to local land subsidence caused by mineral and ground water extraction, isostatic rebound following the last ice age, or tectonic motion.

Tidal datum values at NOS water level stations are routinely computed and are available to the public in the form of the station benchmark sheets. Within the Puget Sound, Washington, study area (between latitudes 47° 3' N and 48° 11' N, and longitudes 123° 11' W and 122° 10' W) there are 69 stations with historical tidal datum values. Those used in this study are shown in Figure 1. In

<sup>\*</sup>*Corresponding author address*: Kurt W. Hess, Coast Survey Development Laboratory, Rm. 7826, 1315 East-West Highway, Silver Spring, MD 20910; e-mail: <u>kurt.hess@noaa.gov.</u>

this area, the value of the elevation of MHHW above MSL varies from 0.8 m at the northern end to 2.0 m at the southern end, and the MLLW varies from -1.6 m at the northern end to -2.5 m at the southern end. These changes are generally correlated with changes in the range of tide.



**Figure 11.** The Puget Sound study area with historical tide stations (squares), water cells in the computational grid (white area), the main axis of the Sound (solid line, with several straight segments, in white area), and the main axis of Hood Canal (dashed line).

#### 3. SPATIAL INTERPOLATION

Spatial interpolation is used to generate the tidal datum fields. The interpolation method requires the datum field, *f*, to satisfy Laplace's Equation (LE),

$$\nabla^2 f = 0 \tag{1}$$

and the solution is found numerically on a grid. No water depth data are used. The solution field matches the input data at the water level stations and takes into account land forms by the use of a specialized land-water boundary condition:

$$\frac{\partial f}{\partial n} = a \frac{\overline{\partial f}}{\partial n}$$
(2)

where *n* is the normal direction,  $\alpha$  is a constant, and the overbar signifies a local average. The interpolation method was shown to give useful digital representations of amplitude and phase distributions as produced by numerical models of tidally dominated bays, as well as datum planes, such as the ellipsoidally-referenced MSL or the MSL-to-MLLW difference (Hess, 2003; Hess, 2002).

The first step in the application of the interpolation method to Puget Sound, Washington, was to create a regular grid of square cells. A cell size of 231 m (0.125 nautical miles) was chosen to resolve many of the narrow passages in the Sound. This yields an undifferentiated grid with 329 cells in the eastward direction and 560 cells in the northward direction. A digitized coastline, obtained from the web site of NOAA's National Geophysical Data Center, was used to define the land-water boundary. A small number of natural passages were too narrow to be resolved automatically, and so were added by manual editing of 70 cells. The resulting grid (Fig. 1) has 37,280 water cells.

The next step was to apply the LE interpolation to the required datum levels. Tidal datums for stations were used for boundary values if the station was adjacent to water; of those available (69), 60 were used (Fig.1). The solution method for the LE, successive over-relaxation, required approximately 1,700 iterations to reach convergence for each of the datum fields (MHHW, MHW, MLW, and MLLW). Convergence was defined as when the maximum change between iterations in the numerical solution at any cell was less than 2.5 x  $10^{-5}$  times the difference between the maximum and minimum input datum values. The spatially-interpolated tidal datums for MHHW, MHW. MLW. and MLLW for Puget Sound are shown in Figures 2 to 5, respectively.



**Figure 2**. Contours of the interpolated MHHW tidal datum field (m).

#### 4. **DISCUSSION**

The accuracy of the computations is, in general, difficult to assess since there are few published datum fields based solely on observations. However, the accuracy was estimated in the following manner. For the MHHW datum, 60 additional approximations of the datum field were generated. To generate each new field, one of the 60 stations was removed as input, a different station for each new field. Then the value from each new field at the cell where the datum input was removed was compared to the value at the same cell in the original field, where the datum input was used. The root mean square (RMS), average, and maximum differences (original value minus new value) are 3.4 cm, -0.3 cm, and 16.4 cm, respectively. The maximum difference, at Bush Point on the west side of Whidbey Island (at 48° 2.0' N and 122° 36.2' W), occurs in a region



**Figure 3**. Contours of the interpolated MHW tidal datum field (m).

with a relatively large horizontal datum gradient (appx. 3 cm per km).

Another useful, but non-rigorous, assessment of accuracy was made by plotting the interpolated tidal datums along the axes of the main channels (shown in Figure 1) and the datums at the nearby tide stations (Figure 6). The results show that the interpolated solution varies little from the input data values.

A third approach to assessing accuracy is to compare interpolated fields with the datums from tidal hydrodynamic models. For example, a tidal model for Puget Sound has been applied to the task of computing tidal datum fields (Mofjeld et al., 2002). In a comparison of the spatially interpolated solution and the modeled datum at 471 locations, the RMS difference for all datums was 5.2 cm. Statistics on the differences between the two models are shown in Table 1.



**Figure 4**. Contours of the interpolated MLW tidal datum field (m).

 TABLE 1

 Differences in tidal datum fields (interpolated minus hydrodynamic model-based values).

| Tidal<br>Datum | Avg. Diff.<br>(cm) | RMS Diff.<br>(cm) | Max. Abs.<br>Diff. (cm) |
|----------------|--------------------|-------------------|-------------------------|
| MHHW           | -5.8               | 6.4               | 11.8                    |
| MHW            | -2.6               | 3.3               | 7.5                     |
| MLW            | -1.3               | 2.9               | 10.9                    |
| MLLW           | -5.9               | 7.0               | 18.4                    |



**Figure 5**. Contours of the interpolated MLLW tidal datum field (m).

Since hydrodynamic models incorporate the physics of water flow, they can produce datum fields that more accurately represent bathymetric influences. However, these models typically require long periods of time (months to years) to calibrate and, because of the complexity of the flow field, usually do not exactly match the data at the tide stations. By contrast, spatial interpolation matches the data at the tide stations but involves no tidal physics. NOS is exploring the approach of taking the results from hydrodynamic models, where they exist, and then spatially-interpolating the errors to produce final, corrected datum fields.

Finally, since datum values at locations other than water level stations are difficult to obtain, especially offshore, NOS has plans to develop rapidly-deployable buoys with GPS positioning capability, but these would not be ready for a few years.



**Figure 6.** For four tidal datums, the interpolated elevations are shown along the main channel (solid line) and data from nearby tide stations (squares), and along Hood Canal (dashed line) and nearby stations (triangles). The main axis and Hood Canal axis are shown in Fig.1.

#### 5. SUMMARY AND CONCLUSIONS

The spatial interpolation of tidal datums is a fast and relatively accurate method of producing tidal datum fields. For Puget Sound, the MHHW field ranges from 0.8 m at the northern end to 2.0 m at the southern end, and the MLLW ranges from -1.6 m at the northern end to -2.5 m at the southern end. The relative accuracy of the MHHW field was estimated to be 3.4 cm. In coastal regions where a tidal hydrodynamic model has been calibrated, the modeled datum field can be corrected by interpolating the errors at the tide stations to produce a more accurate field. These datum fields will facilitate the development of the VDatum tool for the Puget Sound region.

#### REFERENCES

Gesch, D., and R. Wilson, 2002: Development of a seamless multisource topographic/ bathymetric elevation model for Tampa Bay. *Marine Technology Society Journal*, 35(4), 58–64.

Gill, S. K., and J. R. Schultz, 2001: Tidal Datums and Their Applications. Silver Spring, Maryland. NOAA Special Publication NOS CO-OPS 1, 111p. + appendix. [Available from Center for Operational Oceanographic Products and Services, Rm. 6633, 1325 East-West Highway, Silver Spring, Maryland 20910]

Hess, K.W., 2001: Generation of Tidal Datum Fields for Tampa Bay and the New York Bight. NOAA Technical Report NOS CS 11, 43p. [Available from Coast Survey Development Laboratory, Rm. 7806, 1315 East-West Highway, Silver Spring, MD 20910]

\_\_\_\_\_, 2002: Spatial interpolation of tidal data in irregularly-shaped coastal regions by numerical solution of Laplace's equation. *Estuarine, Coastal and Shelf Science*, 54(2), 175-192.

\_\_\_\_\_, 2003: Water level simulation in bays by spatial interpolation of tidal constituents, residual water levels, and datums. *Continental Shelf Research*, 23(5), 395-414.

Milbert, D.G., 2002: Documentation for VDatum (and VDatum Tutorial); Vertical Datum Transformation Software. Ver. 1.06 (http:// nauticalcharts.noaa.gov/bathytopo/vdatum.htm).

Mofjeld, H. O., A. J. Venturato, V. V. Titov, F. I. González, and J. C. Newman, 2002. Tidal Datum Distributions in Puget Sound, Washington, Based on a Tidal Model. NOAA Technical Memorandum OAR PMEL-122, 35pp. [Available from the Pacific Marine Environmental Laboratory, 7600 Sand Point Way, Seattle, WA 98115]

Parker, B.B., D. Milbert, R. Wilson, J. Bailey, and D. Gesch, 2001: Blending bathymetry and topography: the Tampa Bay demonstration project. *Proceedings, U.S. Hydrographic Conference 2001,* Norfolk, VA, The Hydrographic Society of America, 11 pp.

## APPENDIX B. TIDE STATIONS AND TIDAL DATUMS

**Table B.1**. Tide stations and datums relative to MSL. Number is the 7-digit NOS station number. In the column with heading NB, the letter 'a' denotes stations not used in generating the tidal datum fields.

| Ν  | Number  | Latitude | Longitude | MHHW  | MHW   | MLW    | MLLW   | MTL    | DTL    | NB |
|----|---------|----------|-----------|-------|-------|--------|--------|--------|--------|----|
| 1  | 9444705 | 48.0583  | -122,9167 | 0.945 | 0.732 | -0.731 | -1.463 | -9.999 | 0.000  | a  |
| 2  | 9444900 | 48.1117  | -122.7500 | 1.074 | 0.867 | -0.762 | -1.522 | 0.000  | 0.053  | a  |
| 3  | 9445016 | 47.9267  | -122.6167 | 1.253 | 0.997 | -0.997 | -1.844 | -9.999 | 0.000  |    |
| 4  | 9445017 | 47.9250  | -122.6800 | 1.220 | 0.976 | -0.975 | -1.798 | -9.999 | 0.000  |    |
| 5  | 9445059 | 47.8583  | -122.5800 | 1.280 | 1.006 | -1.036 | -1.859 | -9.999 | 0.000  |    |
| 6  | 9445088 | 47.8150  | -122.6583 | 1.332 | 1.061 | -1.060 | -1.932 | -9.999 | 0.000  |    |
| 7  | 9445133 | 47.7483  | -122.7267 | 1.396 | 1.125 | -1.101 | -1.978 | 0.000  | 0.012  |    |
| 8  | 9445246 | 47.7617  | -122.8500 | 1.447 | 1.155 | -1.159 | -2.073 | -9.999 | 0.000  |    |
| 9  | 9445269 | 47.7117  | -122.8217 | 1.463 | 1.158 | -1.158 | -2.042 | -9.999 | 0.000  |    |
| 10 | 9445272 | 47.8000  | -122.8583 | 1.414 | 1.156 | -1.158 | -2.054 | 0.000  | -0.001 |    |
| 11 | 9445293 | 47.6650  | -122.9117 | 1.463 | 1.158 | -1.189 | -2.073 | -9.999 | 0.000  | а  |
| 12 | 9445296 | 47.6417  | -122.8267 | 1.444 | 1.155 | -1.156 | -2.070 | -9.999 | 0.000  |    |
| 13 | 9445326 | 47.6033  | -122.9700 | 1.430 | 1.161 | -1.158 | -2.039 | -9.999 | 0.000  |    |
| 14 | 9445388 | 47.5083  | -123.0517 | 1.415 | 1.125 | -1.124 | -2.051 | -9.999 | 0.000  |    |
| 15 | 9445441 | 47.4183  | -122.9000 | 1.533 | 1.225 | -1.225 | -2.158 | -9.999 | 0.000  |    |
| 16 | 9445478 | 47.3583  | -123.0983 | 1.497 | 1.198 | -1.198 | -2.112 | -9.999 | 0.000  |    |
| 17 | 9445526 | 47.9183  | -122.5450 | 1.295 | 1.039 | -1.043 | -1.887 | -9.999 | 0.000  |    |
| 18 | 9445639 | 47.7967  | -122.4933 | 1.375 | 1.116 | -1.115 | -1.975 | -9.999 | 0.000  |    |
| 19 | 9445683 | 47.7467  | -122.4767 | 1.359 | 1.097 | -1.098 | -1.942 | -9.999 | 0.000  |    |
| 20 | 9445717 | 47.7250  | -122.6383 | 1.487 | 1.219 | -1.219 | -2.091 | -9.999 | 0.000  |    |
| 21 | 9445719 | 47.7250  | -122.6383 | 1.487 | 1.219 | -1.219 | -2.091 | -9.999 | 0.000  |    |
| 22 | 9445753 | 47.7050  | -122.5250 | 1.463 | 1.188 | -1.159 | -2.012 | -9.999 | 0.000  |    |
| 23 | 9445832 | 47.6433  | -122.6150 | 1.491 | 1.226 | -1.225 | -2.112 | -9.999 | 0.000  | а  |
| 24 | 9445882 | 47.6200  | -122.5150 | 1.402 | 1.158 | -1.158 | -2.042 | -9.999 | 0.000  |    |
| 25 | 9445901 | 47.6100  | -122.6600 | 1.555 | 1.280 | -1.280 | -2.103 | -9.999 | 0.000  |    |
| 26 | 9445913 | 47.5967  | -122.5100 | 1.463 | 1.189 | -1.189 | -2.042 | -9.999 | 0.000  |    |
| 27 | 9445938 | 47.5733  | -122.5433 | 1.448 | 1.186 | -1.185 | -2.045 | -9.999 | 0.000  |    |
| 28 | 9445958 | 47.5617  | -122.6233 | 1.498 | 1.230 | -1.212 | -2.080 | 0.000  | 0.009  |    |
| 29 | 9445993 | 47.5233  | -122.5167 | 1.494 | 1.219 | -1.189 | -2.042 | -9.999 | 0.000  |    |
| 30 | 9446025 | 47.5117  | -122.4633 | 1.454 | 1.189 | -1.188 | -2.060 | -9.999 | 0.000  |    |
| 31 | 9446248 | 47.4000  | -122.3283 | 1.475 | 1.204 | -1.207 | -2.079 | -9.999 | 0.000  |    |
| 32 | 9446273 | 47.3867  | -122.4650 | 1.542 | 1.264 | -1.253 | -2.131 | 0.000  | 0.006  |    |
| 33 | 9446281 | 47.3833  | -122.8233 | 1.838 | 1.555 | -1.554 | -2.478 | -9.999 | 0.000  |    |
| 34 | 9446291 | 47.3783  | -122.6400 | 1.707 | 1.433 | -1.433 | -2.286 | -9.999 | 0.000  |    |
| 35 | 9446366 | 47.3417  | -122.7750 | 1.829 | 1.554 | -1.555 | -2.469 | -9.999 | 0.000  | а  |
| 36 | 9446369 | 47.3400  | -122.5883 | 1.494 | 1.250 | -1.250 | -2.103 | -9.999 | 0.000  |    |
| 37 | 9446375 | 47.3333  | -122.5067 | 1.512 | 1.244 | -1.240 | -2.112 | -9.999 | 0.000  |    |
| 38 | 9446451 | 47.3017  | -122.6817 | 1.744 | 1.460 | -1.460 | -2.365 | -9.999 | 0.000  |    |
| 39 | 9446484 | 47.2667  | -122.4133 | 1.511 | 1.246 | -1.224 | -2.093 | 0.000  | 0.011  | а  |
| 40 | 9446486 | 47.2717  | -122.5517 | 1.612 | 1.338 | -1.341 | -2.225 | -9.999 | 0.000  |    |
| 41 | 9446489 | 47.2817  | -122.9233 | 1.838 | 1.554 | -1.555 | -2.475 | -9.999 | 0.000  |    |
| 42 | 9446491 | 47.2800  | -122.6517 | 1.719 | 1.442 | -1.442 | -2.338 | -9.999 | 0.000  |    |
| 43 | 9446545 | 47.2550  | -122.4317 | 1.503 | 1.235 | -1.234 | -2.106 | -9.999 | 0.000  | а  |
| 44 | 9446583 | 47.2467  | -122.8617 | 1.814 | 1.524 | -1.524 | -2.441 | -9.999 | 0.000  |    |
| 45 | 9446628 | 47.2150  | -123.0833 | 1.996 | 1.691 | -1.540 | -2.332 | 0.000  | 0.076  |    |
| 46 | 9446638 | 47.2100  | -122.7533 | 1.768 | 1.493 | -1.463 | -2.347 | -9.999 | 0.000  |    |
| 47 | 9446666 | 47.1967  | -122.9383 | 1.890 | 1.585 | -1.585 | -2.499 | -9.999 | 0.000  |    |

| Table B.1. | (Continued). |
|------------|--------------|
|------------|--------------|

| N  | Number L | atitude | Longitude | MHHW  | MHW   | MLW    | MLLW   | MTL    | DTL    | NB |
|----|----------|---------|-----------|-------|-------|--------|--------|--------|--------|----|
| 48 | 9446671  | 47.1667 | -122.7633 | 1.856 | 1.521 | -1.521 | -2.466 | -9.999 | 0.000  |    |
| 50 | 9446714  | 47.1733 | -122.6033 | 1.741 | 1.463 | -1.460 | -2.368 | -9.999 | 0.000  |    |
| 51 | 9446742  | 47.1583 | -123.0083 | 1.899 | 1.603 | -1.607 | -2.527 | 0.000  | -0.002 |    |
| 52 | 9446800  | 47.1417 | -122.9033 | 1.859 | 1.576 | -1.579 | -2.521 | -9.999 | 0.000  |    |
| 53 | 9446807  | 47.1000 | -122.8967 | 1.879 | 1.591 | -1.598 | -2.535 | 0.000  | -0.004 |    |
| 54 | 9446828  | 47.1183 | -122.6650 | 1.750 | 1.466 | -1.469 | -2.368 | -9.999 | 0.000  |    |
| 55 | 9446969  | 47.0600 | -122.9033 | 1.908 | 1.597 | -1.597 | -2.530 | -9.999 | 0.000  |    |
| 56 | 9447029  | 47.5350 | -122.3217 | 1.417 | 1.143 | -1.143 | -1.966 | -9.999 | 0.000  | а  |
| 57 | 9447110  | 47.5850 | -122.3600 | 1.442 | 1.179 | -1.161 | -2.027 | 0.000  | 0.009  |    |
| 58 | 9447111  | 47.5850 | -122.3600 | 1.442 | 1.179 | -1.161 | -2.027 | 0.000  | 0.009  | а  |
| 59 | 9447130  | 47.6050 | -122.3383 | 1.439 | 1.175 | -1.159 | -2.023 | 0.000  | 0.008  |    |
| 60 | 9447131  | 47.6033 | -122.3383 | 1.438 | 1.176 | -1.158 | -2.021 | 0.000  | 0.009  | а  |
| 61 | 9447265  | 47.6883 | -122.4033 | 1.405 | 1.143 | -1.147 | -2.003 | -9.999 | 0.000  |    |
| 62 | 9447427  | 47.8133 | -122.3833 | 1.365 | 1.106 | -1.107 | -1.960 | -9.999 | 0.000  |    |
| 63 | 9447659  | 47.9800 | -122.2233 | 1.404 | 1.138 | -1.122 | -1.976 | 0.000  | 0.008  |    |
| 64 | 9447725  | 48.0450 | -122.2100 | 1.396 | 1.137 | -1.140 | -1.905 | -9.999 | 0.000  |    |
| 65 | 9447773  | 48.0650 | -122.2883 | 1.432 | 1.158 | -1.128 | -1.951 | -9.999 | 0.000  |    |
| 66 | 9447814  | 47.9400 | -122.3567 | 1.378 | 1.125 | -1.125 | -1.981 | -9.999 | 0.000  |    |
| 67 | 9447827  | 47.9783 | -122.5500 | 1.280 | 0.951 | -0.948 | -1.792 | -9.999 | 0.000  |    |
| 68 | 9447854  | 48.0333 | -122.6033 | 1.067 | 0.854 | -0.853 | -1.615 | -9.999 | 0.000  |    |
| 69 | 9447855  | 48.0267 | -122.5433 | 1.454 | 1.183 | -1.183 | -2.033 | -9.999 | 0.000  |    |
| 70 | 9447856  | 48.0333 | -122.3767 | 1.417 | 1.152 | -1.152 | -2.012 | -9.999 | 0.000  |    |
| 71 | 9447883  | 48.1050 | -122.5700 | 1.432 | 1.158 | -1.159 | -2.012 | -9.999 | 0.000  |    |
| 72 | 9448094  | 48.1367 | -122.3667 | 1.411 | 1.143 | -1.162 | -2.015 | 0.000  | -0.009 |    |

# APPENDIX C. NOS TIDE STATION NUMBERS AND NAMES.

Table C.1. NOS station numbers and names in the Puget Sound region.

| N  | NOS     | Name                               |
|----|---------|------------------------------------|
|    | Station |                                    |
|    | Number  |                                    |
|    |         |                                    |
| 1  | 9444705 | GARDINER LNDG PORST DISCOVERY WA   |
| 2  | 9444900 | PORT TOWNSEND ADMIRALTY INLET WA   |
| 3  | 9445016 | FOULWEATHER BLUFF TWIN SPITS WA    |
| 4  | 9445017 | PORT LUDLOW ADMIRALY INLET WA      |
| 5  | 9445059 | PORT GAMBLE HOOD CANAL WA          |
| 6  | 9445088 | LOFALL WA                          |
| 7  | 9445133 | BANGOR WA                          |
| 8  | 9445246 | WHITNEY POINT WA                   |
| 9  | 9445269 | ZELATCHED POINT DABOB BAY WA       |
| 10 | 9445272 | QUILCENE DABOB BAY HOOD CANAL WA   |
| 11 | 9445293 | PLEASANT HARBOR HOOD CANAL WA      |
| 12 | 9445296 | SEABECK HOOD CANAL WA              |
| 13 | 9445326 | TRITON HEAD WA                     |
| 14 | 9445388 | AYOCK POINT WA                     |
| 15 | 9445441 | LYNCH COVE DOCK WA                 |
| 16 | 9445478 | UNION HOOD CANAL WA                |
| 17 | 9445526 | HANSVILLE WA                       |
| 18 | 9445639 | KINGSTON APPLE TREE COVE WA        |
| 19 | 9445683 | POINT JEFFERSON PUGET SOUND WA     |
| 20 | 9445717 | POULSBO WA                         |
| 21 | 9445719 | POULSBO WA                         |
| 22 | 9445753 | PORT MADISON BAINBRIDGE ISLAND WA  |
| 23 | 9445832 | BROWNSVILLE WA                     |
| 24 | 9445882 | EAGLE HARBOR BAINBRIDGE ISLAND WA  |
| 25 | 94459UI | TRACITON DIES INLET PUGET SND WA   |
| 20 | 9445915 | CLAM DAY WA                        |
| 27 | 9445958 | DEMEDTON WA                        |
| 20 | 9445950 | COUTER COLEY-UNDER VILLON HER MA   |
| 30 | 9445995 | DOINT VASUON WA                    |
| 30 | 9440025 | DES MOINES WA                      |
| 32 | 9446273 | BURTON OUARTERMASTER HAR VASHON WA |
| 32 | 9446281 | ALLYN WA                           |
| 34 | 9446291 | WAIINA CARR INLET PILCET SOUND WA  |
| 35 | 9446366 | VAUGHN CASE INELT PUGET SOUND WA   |
| 36 | 9446369 | GIG HARBOR PUGET SOUND WA          |
| 37 | 9446375 | NEILI POINT WA                     |
| 38 | 9446451 | GREEN POINT WA                     |
| 39 | 9446484 | TACOMA COMMENCEMENT BAY WA         |
| 40 | 9446486 | TACOMA NARROWS BRIDGE WA           |
| 41 | 9446489 | WALKERS LANDING WA                 |
| 42 | 9446491 | ARLET WA                           |
| 43 | 9446545 | TACOMA WA                          |
| 44 | 9446583 | BALLOW WA                          |
| 45 | 9446628 | SHELTON OAKLAND BAY WA             |

Table C.1. (Continued)

| Ν  | NOS<br>Station<br>Number | Name                                     |
|----|--------------------------|------------------------------------------|
|    |                          |                                          |
| 46 | 9446638                  | LONGBRACH FILUCE B PUGET SND WA          |
| 47 | 9446666                  | ARCADIA TOTTEN INLET WA                  |
| 48 | 9446671                  | DEVIL'S HEAD WA                          |
| 49 | 9446705                  | YOMAN POINT ANDERSON ISLAND WA           |
| 50 | 9446714                  | STEILACOOM WA                            |
| 51 | 9446742                  | BARRON POINT LITTLE SKOOKUM INLET ENT WA |
| 52 | 9446800                  | DOFFLEMEYER POINT WA                     |
| 53 | 9446807                  | BUDD INLET SOUTH OF GULL HARBOR WA       |
| 54 | 9446828                  | DUPONT NISQUALLY REACH WA                |
| 55 | 9446969                  | OLYMPIA WA                               |
| 56 | 9447029                  | DUWAMISH RIVER (8TH AVE SOUTH) WA        |
| 57 | 9447110                  | LOCKHEED SHIPYARD TEST CONTROL WA        |
| 58 | 9447111                  | LOCKHEED SHIPYARD TEST SITE WA           |
| 59 | 9447130                  | SEATTLE PUGET SOUND WA                   |
| 60 | 9447131                  | SEATTLE PUGET SOUND (BACKUP) WA          |
| 61 | 9447265                  | MEADOW POINT WA                          |
| 62 | 9447427                  | EDMONDS WA                               |
| 63 | 9447659                  | EVERETT WA                               |
| 64 | 9447725                  | EBEY SLOUGH POSSESSION SOUND WA          |
| 65 | 9447773                  | TULALIP TULALIP BAY WA                   |
| 66 | 9447814                  | GLENDALE POSSESSION SOUND WA             |
| 67 | 9447827                  | DOUBLE BLUFF ADMIRALTY INLET WA          |
| 68 | 9447854                  | BUSH POINT WHIDBEY ISLAND WA             |
| 69 | 9447855                  | HOLLY HARBOR FARMS WA                    |
| 70 | 9447856                  | SANDY POINT SARATOGA PASSAGE WA          |
| 71 | 9447883                  | GREENBANK WHIDBEY ISLAND WA              |
| 72 | 9448094                  | KAYAK PT PORT SUSAN WA                   |

## APPENDIX D. SUMMARY OF COMPARISONS WITH CO-OPS STATION DATA.

| Table D.1. For each station, the RMS error (RMSE) and standard deviation (SD) between the observed |
|----------------------------------------------------------------------------------------------------|
| values of MHHW, MHW, MLW, and MLLW and the corresponding values obtained from the VDatum           |
| gridded files. Under 'Status', an entry of 'null' means that no VDatum values were found.          |

| n        | Number             | Latitude | Longitude                | RMSE(m) | SD(m)   | Status |
|----------|--------------------|----------|--------------------------|---------|---------|--------|
| 1<br>2   | 9444705<br>9444900 | 48.05833 | -122.91666               | 0.00000 | 0.00000 | null   |
| 3        | 9445016            | 47.92667 | -122.61667               | 0.00218 | 0.00206 |        |
| 4        | 9445017            | 47.92500 | -122.68000               | 0.00179 | 0.00167 |        |
| 5        | 9445059            | 47.85833 | -122.58000               | 0.00062 | 0.00059 |        |
| 6        | 9445088            | 47.81500 | -122.65833               | 0.00086 | 0.00083 |        |
| 7        | 9445133            | 47.74833 | -122.72667               | 0.00113 | 0.00095 |        |
| 8        | 9445246            | 47.76167 | -122.85000               | 0.00079 | 0.00070 |        |
| 9        | 9445269            | 47.71167 | -122.82166               | 0.00147 | 0.00110 |        |
| 10       | 9445272            | 47.80000 | -122.85833               | 0.00057 | 0.00056 |        |
| 11       | 9445293            | 47.66500 | -122.91167               | 0.02884 | 0.02680 |        |
| 12       | 9445296            | 47.64167 | -122.82667               | 0.00085 | 0.00077 |        |
| 13       | 9445326            | 47.60333 | -122.97000               | 0.00128 | 0.00124 |        |
| 14       | 9445388            | 47.50834 | -123.05167               | 0.00157 | 0.00155 |        |
| 15       | 9445441            | 47.41833 | -122.90000               | 0.00049 | 0.00049 |        |
| 16       | 9445478            | 47.35833 | -123.09834               | 0.00062 | 0.00062 |        |
| 17       | 9445526            | 47.91833 | -122.54500               | 0.00227 | 0.00215 |        |
| 18       | 9445639            | 47.79667 | -122.49333               | 0.00086 | 0.00085 |        |
| 19       | 9445683            | 47.74667 | -122.47667               | 0.00532 | 0.00531 |        |
| 20       | 9445717            | 47.72500 | -122.63834               | 0.00015 | 0.00013 |        |
| 21       | 9445719            | 47.72500 | -122.63834               | 0.00015 | 0.00013 |        |
| 22       | 9445753            | 47.70500 | -122.52500               | 0.00308 | 0.00297 |        |
| 23       | 9445832            | 47.64333 | -122.61500               | 0.00000 | 0.00000 | null   |
| 24       | 9445882            | 47.62000 | -122.51500               | 0.00105 | 0.00085 |        |
| 25       | 9445901            | 47.61000 | -122.66000               | 0.00033 | 0.00032 |        |
| 26       | 9445913            | 47.59667 | -122.51000               | 0.00037 | 0.00036 |        |
| 27       | 9445938            | 47.57333 | -122.54333               | 0.00140 | 0.00126 |        |
| 28       | 9445958            | 47.56167 | -122.62334               | 0.00031 | 0.00030 |        |
| 29       | 9445993            | 47.52333 | -122.51667               | 0.00293 | 0.00189 |        |
| 30       | 9446025            | 4/.5116/ | -122.46333               | 0.00158 | 0.00101 |        |
| 31       | 9446248            | 4/.40000 | -122.32833               | 0.00033 | 0.00032 |        |
| 3Z       | 9446273            | 4/.3866/ | -122.46500               | 0.00065 | 0.00064 |        |
| 33       | 9446281            | 47.38334 | -122.82333               | 0.00013 | 0.00013 |        |
| 34<br>25 | 9446291            | 4/.3/833 | -122.64000               | 0.00063 | 0.00061 |        |
| 30       | 9446366            | 47.34167 | -122.77500               | 0.00695 | 0.00678 |        |
| 30<br>27 | 9446369            | 47.34000 | -122.58833               | 0.00017 | 0.00017 |        |
| 27<br>20 | 9446373            | 47.33333 | -122.50007               | 0.00135 | 0.00133 |        |
| 30       | 9440451            | 47.30107 | -122.00100               | 0.00123 | 0.00123 |        |
| 10       | 9116186            | 47 27167 | _122.41333<br>_122 55167 | 0.01060 | 0.01327 |        |
| д1       | 9446489            | 47 28167 | -122 92333               | 0.00009 | 0.00009 |        |
| ⊐⊥<br>42 | 9446491            | 47 28000 | -122 65166               | 0 00026 | 0 00025 |        |
| 43       | 9446545            | 47 25500 | -122 43166               | 0 01237 | 0 01224 |        |
| 44       | 9446583            | 47.24667 | -122.86166               | 0.00057 | 0.00057 |        |
|          | 5110000            | 1,.21007 | 122.00100                | 0.00007 | 0.00007 |        |

| n  | Number  | Latitude    | Longitude  | RMSE    | SD      | Status |
|----|---------|-------------|------------|---------|---------|--------|
|    |         | 17 01 5 0 0 | 100.0000   | 0 00110 |         |        |
| 45 | 9446628 | 47.21500    | -123.08334 | 0.00113 | 0.00041 |        |
| 46 | 9446638 | 47.21000    | -122.75333 | 0.00052 | 0.00040 |        |
| 47 | 9446666 | 47.19667    | -122.93833 | 0.00146 | 0.00136 |        |
| 48 | 9446671 | 47.16667    | -122.76334 | 0.00656 | 0.00656 |        |
| 49 | 9446705 | 47.18000    | -122.67500 | 0.00111 | 0.00029 |        |
| 50 | 9446714 | 47.17333    | -122.60333 | 0.00089 | 0.00086 |        |
| 51 | 9446742 | 47.15833    | -123.00833 | 0.00044 | 0.00043 |        |
| 52 | 9446800 | 47.14167    | -122.90334 | 0.00107 | 0.00098 |        |
| 53 | 9446807 | 47.10000    | -122.89667 | 0.00070 | 0.00058 |        |
| 54 | 9446828 | 47.11833    | -122.66500 | 0.00145 | 0.00144 |        |
| 55 | 9446969 | 47.06000    | -122.90334 | 0.00007 | 0.00006 |        |
| 56 | 9447029 | 47.53500    | -122.32166 | 0.00000 | 0.00000 | null   |
| 57 | 9447110 | 47.58500    | -122.36000 | 0.00020 | 0.00017 |        |
| 58 | 9447111 | 47.58500    | -122.36000 | 0.00020 | 0.00017 |        |
| 59 | 9447130 | 47.60500    | -122.33833 | 0.00022 | 0.00021 |        |
| 60 | 9447131 | 47.60333    | -122.33833 | 0.00170 | 0.00141 |        |
| 61 | 9447265 | 47.68833    | -122.40334 | 0.00052 | 0.00044 |        |
| 62 | 9447427 | 47.81333    | -122.38333 | 0.00034 | 0.00033 |        |
| 63 | 9447659 | 47.98000    | -122.22334 | 0.00034 | 0.00034 |        |
| 64 | 9447725 | 48.04500    | -122.21000 | 0.00030 | 0.00029 |        |
| 65 | 9447773 | 48.06500    | -122.28833 | 0.00147 | 0.00056 |        |
| 66 | 9447814 | 47.94000    | -122.35667 | 0.00108 | 0.00095 |        |
| 67 | 9447827 | 47.97833    | -122.55000 | 0.00173 | 0.00155 |        |
| 68 | 9447854 | 48.03333    | -122.60333 | 0.00452 | 0.00448 |        |
| 69 | 9447855 | 48.02667    | -122.54333 | 0.00000 | 0.00000 | null   |
| 70 | 9447856 | 48.03333    | -122.37666 | 0.00056 | 0.00049 |        |
| 71 | 9447883 | 48.10500    | -122.57000 | 0.00025 | 0.00025 |        |
| 72 | 9448094 | 48.13667    | -122.36667 | 0.00073 | 0.00038 |        |

Table D.1. (Continued).

| erro | r sum | mary |   |         |    |    |    |
|------|-------|------|---|---------|----|----|----|
|      | numbe | er - | = | 68      |    |    |    |
|      | avg.  | rmse | = | 0.00203 |    |    |    |
|      | avg.  | std  | = | 0.00183 |    |    |    |
|      | max.  | rmse | = | 0.02884 | at | i= | 11 |
|      | max.  | std  | = | 0.02680 | at | i= | 11 |

#### APPENDIX E. SUMMARY OF COMPARISONS WITH NGS BENCHMARK DATA.

**Table E.1**. For each station, the RMS error (RMSE) and standard deviation (SD) between the observed values of MHHW, MHW, MLW, and MLLW and the corresponding values obtained from the VDatum gridded files. The PID is the NGS's identification number. Under 'Status', an entry of 'null' means that no VDatum values were found.

\_

| n  | PID    | Number  | Latitude | Longitude  | RMSE(m) | SD(m)   | Status |
|----|--------|---------|----------|------------|---------|---------|--------|
| 1  | SY0225 | 9447814 | 47.93916 | -122.35666 | 0.00081 | 0.00062 |        |
| 2  | SY0227 | 9447814 | 47.93916 | -122.35666 | 0.00081 | 0.00062 |        |
| 3  | TR0186 | 9447725 | 48.05138 | -122.17916 | 0.00000 | 0.00000 | null   |
| 4  | TR0184 | 9447725 | 48.05361 | -122.17555 | 0.00000 | 0.00000 | null   |
| 5  | TR0185 | 9447725 | 48.05277 | -122.17722 | 0.00000 | 0.00000 | null   |
| 6  | SY0003 | 9447659 | 47.97944 | -122.21555 | 0.00000 | 0.00000 | null   |
| 7  | SY0004 | 9447659 | 47.97944 | -122.21583 | 0.00000 | 0.00000 | null   |
| 8  | SY0004 | 9447659 | 47.97944 | -122.21583 | 0.00000 | 0.00000 | null   |
| 9  | SY0002 | 9447659 | 47.98055 | -122.21527 | 0.00000 | 0.00000 | null   |
| 10 | SY0128 | 9447427 | 47.81138 | -122.38250 | 0.00056 | 0.00021 |        |
| 11 | SY0126 | 9447427 | 47.81305 | -122.38027 | 0.00060 | 0.00025 |        |
| 12 | SY0282 | 9447130 | 47.60194 | -122.33250 | 0.00000 | 0.00000 | null   |
| 13 | SY0328 | 9447130 | 47.59944 | -122.32861 | 0.00000 | 0.00000 | null   |
| 14 | SY0288 | 9447130 | 47.60416 | -122.33361 | 0.00928 | 0.00138 |        |
| 15 | SY0283 | 9447130 | 47.60194 | -122.33388 | 0.00930 | 0.00137 |        |
| 16 | SY0284 | 9447130 | 47.60166 | -122.33500 | 0.00931 | 0.00137 |        |
| 17 | SY0286 | 9447130 | 47.60305 | -122.33444 | 0.00929 | 0.00137 |        |
| 18 | SY0290 | 9447130 | 47.60388 | -122.33750 | 0.00926 | 0.00141 |        |
| 19 | SY0289 | 9447130 | 47.60444 | -122.33500 | 0.00928 | 0.00138 |        |
| 20 | SY0287 | 9447130 | 47.60305 | -122.33583 | 0.00928 | 0.00138 |        |
| 21 | SY0865 | 9446969 | 47.05166 | -122.90250 | 0.00068 | 0.00059 |        |
| 22 | SY0866 | 9446969 | 47.05194 | -122.90388 | 0.00071 | 0.00062 |        |
| 23 | SY0869 | 9446969 | 47.04583 | -122.90055 | 0.00000 | 0.00000 | null   |
| 24 | SY0868 | 9446969 | 47.05000 | -122.90138 | 0.00073 | 0.00063 |        |
| 25 | SY0867 | 9446969 | 47.04972 | -122.90083 | 0.00000 | 0.00000 | null   |
| 26 | SY0743 | 9446828 | 47.11888 | -122.66305 | 0.00205 | 0.00164 |        |
| 27 | SY0741 | 9446828 | 47.11888 | -122.66305 | 0.00205 | 0.00164 |        |
| 28 | SY0738 | 9446828 | 47.11694 | -122.66500 | 0.00261 | 0.00234 |        |
| 29 | SY0740 | 9446828 | 47.11694 | -122.66444 | 0.00267 | 0.00240 |        |
| 30 | SY0739 | 9446828 | 47.11750 | -122.66500 | 0.00239 | 0.00207 |        |
| 31 | SY0757 | 9446714 | 47.17250 | -122.60166 | 0.00220 | 0.00048 |        |
| 32 | SY0756 | 9446714 | 47.17111 | -122.60111 | 0.00236 | 0.00061 |        |
| 33 | SY0755 | 9446714 | 47.17388 | -122.59694 | 0.00526 | 0.00441 |        |
| 34 | SY0754 | 9446714 | 47.17250 | -122.60111 | 0.00216 | 0.00046 |        |
| 35 | SY0536 | 9446545 | 47.26416 | -122.41194 | 0.01254 | 0.01236 |        |
| 36 | SY0535 | 9446545 | 47.25888 | -122.41916 | 0.00000 | 0.00000 | null   |
| 37 | SY0534 | 9446545 | 47.25416 | -122.42916 | 0.00000 | 0.00000 | null   |
| 38 | SY0532 | 9446545 | 47.25500 | -122.43361 | 0.01270 | 0.01253 |        |
| 39 | SY0533 | 9446545 | 47.24916 | -122.43444 | 0.00000 | 0.00000 | null   |
| 40 | SY0541 | 9446545 | 47.24583 | -122.43444 | 0.00000 | 0.00000 | null   |
| 41 | SY2987 | 9446491 | 47.28277 | -122.65805 | 0.00186 | 0.00180 |        |
| 42 | SY0536 | 9446484 | 47.26416 | -122.41194 | 0.01436 | 0.01420 |        |
| 43 | SY0535 | 9446484 | 47.25888 | -122.41916 | 0.00000 | 0.00000 | null   |
| 44 | SY0534 | 9446484 | 47.25416 | -122.42916 | 0.00000 | 0.00000 | null   |
| 45 | SY0840 | 9446375 | 47.33222 | -122.50555 | 0.00245 | 0.00179 |        |
| 46 | SY0808 | 9446281 | 47.38972 | -122.82361 | 0.00057 | 0.00049 |        |

 Table E.1 (Continued).

| 47         SY0807         9446281         47.38972         -122.82361         0.00057         0.00049           48         SY0805         9446281         47.38361         -122.82527         0.00053         0.00044           49         SY0806         9446281         47.38500         -122.82750         0.00053         0.00043           51         SY0804         9446254         47.38638         -122.45722         0.00618         0.00163           53         SY0647         9446254         47.38638         -122.45611         0.00620         0.00179           54         SY2646         9446254         47.38636         -122.62916         0.01040         0.00164           57         SY0917         9445958         47.56305         -122.62916         0.01042         0.00164           58         SY0919         9445958         47.56305         -122.63055         0.00000         0.00262           61         SY0902         9445938         47.57111         -122.5411         0.00288         0.00262           62         SY0901         9445938         47.57583         -122.47000         0.01276         0.01269           64         SY0919         9445938         47.35694         -123.1030                                                        | n  | PID    | Number  | Latitude | Longitude  | RMSE(m) | SD(m)   | Status |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|---------|----------|------------|---------|---------|--------|
| 48         SY0805         9446281         47.38361         -122.82527         0.00052         0.00044           49         SY0806         9446281         47.38500         -122.82550         0.00054         0.00045           51         SY0845         9446254         47.38638         -122.45161         0.00624         0.00076           52         SY0645         9446254         47.38638         -122.45722         0.00618         0.00163           53         SY0647         9446254         47.38638         -122.45211         0.00620         0.00179           54         SY2364         9446254         47.56361         -122.62916         0.01042         0.00164           57         SY0920         9445958         47.56361         -122.62527         0.01043         0.00165           58         SY0915         9445958         47.56361         -122.6511         0.00288         0.00262           61         SY0902         9445938         47.57111         -122.55111         0.00288         0.00262           62         SY0900         9445938         47.57583         -122.47000         0.01276         0.01269           64         SY1275         9445478         47.35694         -123.1003                                                        | 47 | SY0807 | 9446281 | 47.38972 | -122.82361 | 0.00057 | 0.00049 |        |
| 49       \$Y0806       9446281       47.38500       -122.82666       0.00054       0.00043         50       \$Y0804       9446284       47.38722       -122.8750       0.00053       0.00043         51       \$Y0645       9446254       47.38638       -122.45166       0.00620       0.00163         53       \$Y0647       9446254       47.38638       -122.45611       0.00620       0.00179         54       \$Y2364       9446248       47.40277       -122.62416       0.01042       0.00165         55       \$Y0917       9445958       47.56305       -122.62426       0.01043       0.00165         57       \$Y0920       9445958       47.56305       -122.62527       0.01043       0.00165         58       \$Y0919       9445958       47.56305       -122.62694       0.01044       0.00165         59       \$Y0920       9445938       47.57111       -122.55111       0.00288       0.00262         61       \$Y0902       9445938       47.57533       -122.14700       0.01276       0.01269         65       \$Y1272       9445478       47.35694       -123.10083       0.00159       0.00159         66       \$Y1274       9445478                                                                                                                             | 48 | SY0805 | 9446281 | 47.38361 | -122.82527 | 0.00052 | 0.00044 |        |
| 50         SY0804         9446281         47.38444         -122.82750         0.00053         0.00043           51         SY0645         9446254         47.38638         -122.45722         0.00618         0.00163           53         SY0647         9446254         47.38638         -122.45722         0.00000         0.00000           54         SY2364         9446248         47.40277         -122.32833         0.00000         0.00000           55         SY0917         9445958         47.56305         -122.62527         0.01043         0.00165           58         SY0919         9445958         47.56305         -122.62597         0.01044         0.00165           58         SY0919         9445958         47.56305         -122.62694         0.01044         0.00165           58         SY0919         9445938         47.57111         -122.55111         0.00288         0.00262           61         SY0902         9445938         47.57138         -122.15111         0.00288         0.00262           62         SY0901         9445938         47.5722         -123.10035         0.00159         0.00159           63         SY0919         9445474         47.35694         -123.1003                                                        | 49 | SY0806 | 9446281 | 47.38500 | -122.82666 | 0.00054 | 0.00045 |        |
| S1         SY0645         9446254         47.38722         -122.4516         0.00624         0.00076           S2         SY0646         9446254         47.38638         -122.45722         0.00618         0.00179           54         SY2364         9446244         47.40277         -122.32833         0.00206         0.00000         null           55         SY0917         9445958         47.56305         -122.62916         0.00000         0.00164           57         SY0920         9445958         47.56305         -122.62527         0.01043         0.00165           58         SY0915         9445938         47.57531         -122.55111         0.00288         0.00262           61         SY0902         9445938         47.57111         -122.55116         0.00343         0.00164           63         SY0901         9445938         47.57583         -122.54833         0.00466         0.00464           64         SY1915         9445478         47.35694         -123.10305         0.00159         0.00159           65         SY1275         9445478         47.35694         -123.10305         0.00063         0.00759           64         SY1275         9445478         47.35694                                                             | 50 | SY0804 | 9446281 | 47.38444 | -122.82750 | 0.00053 | 0.00043 |        |
| 52       SY0646       9446254       47.38638       -122.45722       0.00618       0.00163         53       SY0647       9446244       47.38638       -122.45611       0.00620       0.00062         55       SY0917       9445958       47.56361       -122.62916       0.00000       0.00164         56       SY0920       9445958       47.56305       -122.62510       0.01044       0.00165         58       SY0915       9445958       47.56305       -122.62540       0.01044       0.00165         58       SY0915       9445938       47.57511       -122.55111       0.00288       0.00262         61       SY0902       9445938       47.57113       -122.55111       0.00288       0.00262         61       SY0902       9445938       47.57138       -122.5166       0.00343       0.00316         63       SY0901       9445938       47.57583       -122.47000       0.01276       0.01269         64       SY4915       9445478       47.35694       -123.10305       0.00159       0.00159         65       SY1272       9445478       47.35722       -123.05750       0.00159       0.00159         66       SY1273       9445746                                                                                                                                         | 51 | SY0645 | 9446254 | 47.38722 | -122.46166 | 0.00624 | 0.00076 |        |
| 53       SY0647       9446254       47.38638       -122.45611       0.00620       0.00179         54       SY2364       9446244       47.40277       -122.3233       0.00206       0.00000       null         55       SY0917       9445958       47.56305       -122.62416       0.01042       0.00164         57       SY0920       9445958       47.56305       -122.62527       0.01044       0.00165         58       SY0915       9445958       47.56317       -122.63055       0.00000       0.00000       null         60       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         61       SY0902       9445938       47.57138       -122.45033       0.00486       0.00262         62       SY0900       9445938       47.57533       -122.47000       0.01276       0.01269         65       SY1272       9445478       47.35694       -123.10083       0.00081       0.00079         66       SY1274       9445478       47.35722       -123.05055       0.00159       0.00159         67       SY1274       9445384       47.60305       -122.98220       0.00377       0.00085         71                                                                                                                                              | 52 | SY0646 | 9446254 | 47.38638 | -122.45722 | 0.00618 | 0.00163 |        |
| 54       \$Y2364       9446248       47.40277       -122.32833       0.00206       0.00002       null         55       \$Y0917       9445958       47.66305       -122.6216       0.00000       0.000164         56       \$Y0920       9445958       47.56305       -122.62527       0.01043       0.00165         58       \$Y0915       9445958       47.56277       -122.6305       0.00000       0.00000       null         60       \$Y0902       9445938       47.57111       -122.55111       0.00288       0.00262         61       \$Y0902       9445938       47.57131       -122.55111       0.00288       0.00262         62       \$Y0902       9445938       47.57583       -122.55111       0.00288       0.00262         63       \$Y0902       9445938       47.57583       -122.47000       0.00126       0.00159         65       \$Y1272       9445478       47.35694       -123.10305       0.00159       0.00159         66       \$Y1274       9445478       47.35722       -123.00305       0.00159       0.00159         67       \$Y1274       9445478       47.76138       -122.98222       0.00390       0.00379         72                                                                                                                                   | 53 | SY0647 | 9446254 | 47.38638 | -122.45611 | 0.00620 | 0.00179 |        |
| 55       SY0917       9445958       47.56361       -122.62916       0.00000       0.00000       null         56       SY0920       9445958       47.56305       -122.62916       0.01043       0.00165         58       SY0919       9445958       47.56361       -122.62694       0.01044       0.00165         59       SY0915       9445938       47.5677       -122.63055       0.00000       0.00262         60       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         61       SY0901       9445938       47.57138       -122.54833       0.00466       0.00464         63       SY0915       9445948       47.35783       -122.47000       0.01276       0.01269         65       SY1272       9445478       47.35792       -123.09344       0.0066       0.0063         67       SY1274       9445478       47.35722       -123.05750       0.00159       0.00159         68       SY1271       9445388       47.60305       -122.98222       0.00390       0.00379         68       SY1274       9445246       47.76138       -122.72638       0.01622       0.0072         73       SY1162       9                                                                                                                                       | 54 | SY2364 | 9446248 | 47.40277 | -122.32833 | 0.00206 | 0.00062 |        |
| 56       SY0922       9445958       47.56305       -122.62416       0.01042       0.00164         57       SY0920       9445958       47.56361       -122.62527       0.01043       0.00165         58       SY0919       9445958       47.56361       -122.62527       0.01044       0.00165         59       SY0912       9445938       47.57111       -122.63055       0.00000       0.00262         61       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         62       SY0901       9445938       47.57583       -122.54833       0.00466       0.00464         64       SY4915       9445478       47.35634       -123.10305       0.00159       0.0159         65       SY1272       9445478       47.35694       -123.10083       0.00066       0.00079         66       SY1271       9445478       47.3572       -123.06055       0.00159       0.00159         67       SY1236       9445388       47.4972       -123.06055       0.00237       0.00072         71       SY514       9445326       47.76138       -122.78500       0.00237       0.00072         72       SY1162       9445246 <t< td=""><td>55</td><td>SY0917</td><td>9445958</td><td>47.56361</td><td>-122.62916</td><td>0.0000</td><td>0.00000</td><td>null</td></t<>  | 55 | SY0917 | 9445958 | 47.56361 | -122.62916 | 0.0000  | 0.00000 | null   |
| 57       SY0920       9445958       47.56305       -122.62527       0.01043       0.00165         58       SY0919       9445958       47.56361       -122.62694       0.01044       0.00165         59       SY0915       9445938       47.57111       -122.55111       0.00288       0.00262         61       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         62       SY0900       9445938       47.57138       -122.55116       0.00248       0.00262         62       SY0900       9445938       47.57583       -122.55116       0.00288       0.00262         63       SY0901       9445938       47.57583       -122.55166       0.00343       0.00464         64       SY4915       9445683       47.75783       -122.10305       0.00159       0.0159         66       SY1275       9445478       47.35694       -123.10035       0.00159       0.00135         68       SY1271       9445478       47.50750       -123.05750       0.00135       0.00179         71       SY1236       9445384       47.40305       -122.05750       0.00135       0.00172         73       SY1162       9445246                                                                                                                                         | 56 | SY0922 | 9445958 | 47.56305 | -122.62416 | 0.01042 | 0.00164 |        |
| 58       SY0919       9445958       47.56361       -122.62694       0.01044       0.00165         59       SY0915       9445958       47.556277       -122.63055       0.00000       0.00262         60       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         61       SY0902       9445938       47.57138       -122.55166       0.00343       0.00316         63       SY0901       9445938       47.57583       -122.54833       0.00464       0.00464         64       SY4915       9445683       47.35594       -123.10305       0.00159       0.00159         65       SY1272       9445478       47.35722       -123.10305       0.00159       0.00159         66       SY1271       9445478       47.35722       -123.10305       0.00159       0.00159         69       SY1236       9445388       47.60305       -123.05750       0.00137       0.00062         71       SY164       9445246       47.76138       -122.8000       0.00237       0.00072         73       SY1162       9445246       47.76138       -122.72638       0.01622       0.00789         74       SY164       9445246                                                                                                                                          | 57 | SY0920 | 9445958 | 47.56305 | -122.62527 | 0.01043 | 0.00165 |        |
| 59       SY0915       9445958       47.56277       -122.63055       0.00000       0.00000       null         60       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         61       SY0900       9445938       47.57131       -122.55111       0.00288       0.00262         62       SY0900       9445938       47.57583       -122.5166       0.00343       0.00166         63       SY0901       9445938       47.57583       -122.47000       0.01276       0.01269         65       SY1272       9445478       47.35594       -123.10035       0.00086       0.00079         66       SY1271       9445478       47.35594       -123.10035       0.00159       0.00159         69       SY1236       9445388       47.50750       -123.05750       0.00135       0.0013         70       SY1236       9445246       47.6138       -122.85000       0.00237       0.00072         73       SY1162       9445246       47.76138       -122.7638       0.01622       0.00789         74       SY1164       9445246       47.76138       -122.7638       0.01622       0.00072         73       SY162       944                                                                                                                                       | 58 | SY0919 | 9445958 | 47.56361 | -122.62694 | 0.01044 | 0.00165 |        |
| 60       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         61       SY0902       9445938       47.57118       -122.55116       0.00343       0.00316         62       SY0901       9445938       47.57138       -122.55166       0.00343       0.00464         63       SY0911       9445683       47.57583       -122.54833       0.00486       0.00464         64       SY4915       9445683       47.75583       -122.47000       0.01276       0.01269         65       SY1272       9445478       47.35694       -123.10305       0.00159       0.00159         66       SY1274       9445478       47.35722       -123.00750       0.00135       0.00113         70       SY1236       9445388       47.50750       -123.05750       0.00135       0.00135         71       SY514       9445266       47.60305       -122.98222       0.00390       0.00379         72       SY1163       9445246       47.76138       -122.78500       0.00237       0.00022         74       SY1162       9445246       47.76138       -122.72638       0.01622       0.0789         74       SY162       944500 <t< td=""><td>59</td><td>SY0915</td><td>9445958</td><td>47.56277</td><td>-122.63055</td><td>0.00000</td><td>0.00000</td><td>null</td></t<> | 59 | SY0915 | 9445958 | 47.56277 | -122.63055 | 0.00000 | 0.00000 | null   |
| 61       SY0902       9445938       47.57111       -122.55111       0.00288       0.00262         62       SY0900       9445938       47.57138       -122.55166       0.00343       0.00464         63       SY0911       9445938       47.57583       -122.54833       0.00486       0.00464         64       SY4915       9445478       47.35694       -122.54833       0.00159       0.01269         65       SY1272       9445478       47.35722       -123.00944       0.00066       0.00079         66       SY1274       9445478       47.35722       -123.10083       0.00159       0.00159         69       SY1236       9445388       47.50750       -123.05750       0.00135       0.00113         70       SY1236       9445388       47.60305       -122.98222       0.00390       0.00379         71       SY514       9445246       47.76138       -122.85000       0.00237       0.00072         73       SY1162       9445246       47.76138       -122.7638       0.01622       0.00789         76       TR2726       9444900       48.11138       -122.76166       0.06637       0.02565         78       TR2693       0       48                                                                                                                                       | 60 | SY0902 | 9445938 | 47.57111 | -122.55111 | 0.00288 | 0.00262 |        |
| 62       \$Y0900       9445938       47.57138       -122.55166       0.00343       0.00316         63       \$Y0901       9445938       47.57583       -122.54833       0.00466       0.00464         64       \$Y4915       9445683       47.75583       -122.54833       0.00159       0.01269         65       \$Y1272       9445478       47.35694       -123.10305       0.00066       0.00063         67       \$Y1274       9445478       47.35722       -123.07944       0.00159       0.00159         68       \$Y1271       9445478       47.35722       -123.0750       0.00135       0.00113         70       \$Y1236       9445388       47.50750       -123.05750       0.00135       0.00113         70       \$Y1236       9445388       47.60305       -122.98222       0.00390       0.00379         71       \$Y5514       9445246       47.76138       -122.85000       0.00237       0.00072         73       \$Y1162       9445246       47.76138       -122.72638       0.01622       0.00789         74       \$Y1164       9445246       47.76138       -122.75194       0.06569       0.02576         77       TR0559       9444900                                                                                                                              | 61 | SY0902 | 9445938 | 47.57111 | -122.55111 | 0.00288 | 0.00262 |        |
| 63       SY0901       9445938       47.57583       -122.54833       0.00486       0.00464         64       SX4915       9445683       47.75583       -122.47000       0.01276       0.01269         65       SY1272       9445478       47.35694       -123.10305       0.00159       0.00159         66       SY1274       9445478       47.35722       -123.09944       0.00061       0.00079         68       SY1271       9445478       47.35722       -123.10305       0.00159       0.00159         69       SY1236       9445388       47.50750       -123.05750       0.00135       0.00137         70       SY1238       9445384       47.60305       -122.98222       0.00390       0.00379         72       SY1162       9445246       47.76138       -122.78500       0.00237       0.00072         73       SY1162       9445246       47.76138       -122.72638       0.01622       0.00789         76       TR2726       9444900       48.11138       -122.72638       0.01622       0.00789         76       TR2726       9444900       48.11138       -122.71940       0.06659       0.02565         78       TR2693       0                                                                                                                                              | 62 | SY0900 | 9445938 | 47.57138 | -122.55166 | 0.00343 | 0.00316 |        |
| 64       SY4915       9445683       47.75583       -122.47000       0.01276       0.01269         65       SY1272       9445478       47.35694       -123.10305       0.00159       0.00159         66       SY1275       9445478       47.35722       -123.09944       0.00066       0.00079         68       SY1271       9445478       47.35722       -123.10305       0.00159       0.00159         69       SY1236       9445388       47.35722       -123.05750       0.00135       0.00113         70       SY1236       9445388       47.49972       -123.06055       0.00877       0.00865         71       SY514       9445264       47.6138       -122.85000       0.00237       0.00072         73       SY1162       9445246       47.76138       -122.85000       0.00237       0.00072         75       SY0959       9445133       47.74666       -122.75194       0.06657       0.02576         77       TR0559       9444900       48.11138       -122.75194       0.06000       null         79       TR0552       0       48.08027       -123.04527       0.00000       null         70       TR0851       0       48.08027                                                                                                                                             | 63 | SY0901 | 9445938 | 47.57583 | -122.54833 | 0.00486 | 0.00464 |        |
| 65       SY1272       9445478       47.35694       -123.10305       0.00159       0.00159         66       SY1275       9445478       47.35722       -123.09944       0.00066       0.00079         68       SY1271       9445478       47.35694       -123.10083       0.00159       0.00159         69       SY1236       9445388       47.50750       -123.05750       0.00135       0.00137         70       SY1238       9445388       47.60305       -122.98222       0.00390       0.00379         72       SY1163       9445246       47.76138       -122.85000       0.00237       0.00072         73       SY1164       9445246       47.76138       -122.7638       0.01622       0.00789         74       SY1164       9445246       47.76138       -122.72638       0.01622       0.00789         75       SY0959       9445133       47.74666       -122.72638       0.01622       0.00789         76       TR2726       944900       48.11138       -122.75194       0.06657       0.02565         78       TR2693       0       48.08027       -123.04427       0.00000       0.00000       null         79       TR0852       0 <td>64</td> <td>SY4915</td> <td>9445683</td> <td>47.75583</td> <td>-122.47000</td> <td>0.01276</td> <td>0.01269</td> <td></td>            | 64 | SY4915 | 9445683 | 47.75583 | -122.47000 | 0.01276 | 0.01269 |        |
| 66       SY1275       9445478       47.35722       -123.09944       0.00066       0.00063         67       SY1274       9445478       47.35694       -123.10083       0.00159       0.00159         68       SY1271       9445478       47.35722       -123.05750       0.00135       0.00113         70       SY1236       9445388       47.50750       -123.05750       0.00877       0.00865         71       SY5514       9445326       47.60305       -122.98222       0.00390       0.0072         73       SY1162       9445246       47.76138       -122.85000       0.00237       0.00072         74       SY1164       9445246       47.746138       -122.7638       0.01622       0.00789         76       TR2726       9444900       48.11138       -122.75194       0.06569       0.02565         78       TR2693       0       48.08027       -123.04527       0.00000       null         80       TR0852       0       48.08000       -123.04527       0.00000       null         81       TR0850       0       48.08000       -123.04527       0.00000       null         82       TR0186       0       48.08000       -122                                                                                                                                                | 65 | SY1272 | 9445478 | 47.35694 | -123.10305 | 0.00159 | 0.00159 |        |
| 67       SY1274       9445478       47.35694       -123.10083       0.00081       0.00079         68       SY1271       9445478       47.35722       -123.10305       0.00159       0.00159         69       SY1236       9445388       47.50750       -123.05750       0.00135       0.00113         70       SY1238       9445388       47.49972       -123.06055       0.00877       0.00865         71       SY5514       9445326       47.60305       -122.98222       0.00390       0.0072         73       SY1162       9445246       47.76138       -122.85000       0.00237       0.00072         73       SY1164       9445246       47.76138       -122.85000       0.00237       0.00072         75       SY0959       9445133       47.74666       -122.72638       0.01622       0.00789         76       TR2726       944900       48.11583       -122.75194       0.06667       0.02576         77       TR0559       9444900       48.017916       -123.04527       0.00000       null         80       TR0851       0       48.08027       -123.04527       0.00000       null         81       TR0850       0       48.08000                                                                                                                                            | 66 | SY1275 | 9445478 | 47.35722 | -123.09944 | 0.00066 | 0.00063 |        |
| 68       SY1271       9445478       47.35722       -123.10305       0.00159       0.00159         69       SY1236       9445388       47.50750       -123.05750       0.00135       0.00113         70       SY1238       9445388       47.49972       -123.06055       0.00877       0.00865         71       SY5514       9445326       47.60305       -122.98222       0.00390       0.0072         73       SY1162       9445246       47.76138       -122.85000       0.00237       0.00072         73       SY1164       9445246       47.76138       -122.72638       0.01622       0.00789         76       TR2726       9444900       48.11138       -122.75194       0.06569       0.02565         78       TR2693       0       48.07916       -123.04527       0.00000       null         94       TR0851       0       48.08027       -123.04527       0.00000       null         84       TR0186       0       48.05361       -122.92250       0.00000       null         84       Syn82       0       47.28250       -122.92250       0.00000       null         84       Syn782       0       47.28250       -122.92250 <td>67</td> <td>SY1274</td> <td>9445478</td> <td>47.35694</td> <td>-123.10083</td> <td>0.00081</td> <td>0.00079</td> <td></td>                     | 67 | SY1274 | 9445478 | 47.35694 | -123.10083 | 0.00081 | 0.00079 |        |
| 69       SY1236       9445388       47.50750       -123.05750       0.00135       0.00113         70       SY1238       9445388       47.49972       -123.06055       0.00877       0.00865         71       SY5514       9445326       47.60305       -122.98222       0.00390       0.00379         72       SY1163       9445246       47.76138       -122.85000       0.00237       0.000072         73       SY1162       9445246       47.76138       -122.85000       0.00237       0.00072         75       SY059       9445133       47.74666       -122.7638       0.01622       0.00789         76       TR2726       944900       48.11138       -122.75194       0.06569       0.02565         78       TR2693       0       48.07916       -123.04527       0.00000       null         79       TR0851       0       48.08027       -123.04527       0.00000       null         81       TR0851       0       48.05361       -122.17916       0.00000       null         81       TR0850       0       48.05361       -122.17955       0.00000       null         82       TR0186       48.05361       -122.17555       0.000                                                                                                                                                | 68 | SY1271 | 9445478 | 47.35722 | -123.10305 | 0.00159 | 0.00159 |        |
| 70SY1238944538847.49972-123.060550.008770.0086571SY551494452647.60305-122.982220.003900.0037972SY1163944524647.76138-122.850000.002370.0007273SY1164944524647.76138-122.850000.002370.0007275SY0959944513347.74666-122.76380.016220.0078976TR2726944490048.11138-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null79TR0851048.08027-123.045270.000000.00000null80TR0851048.05361-122.1751940.000000.00000null81TR0850048.08027-123.045270.000000.00000null81TR0851048.05361-122.175550.000000.00000null83TR0184048.05361-122.175550.000000.0256585SY0782047.28250-122.362770.000000.0256586SY0274047.58416-122.362770.000000.0256588SY0272047.57833-122.362770.000000.0256590SY0270047.57444-122.362770.000000.0256591SY0269047.57916-122.353880.000000.0256592 <t< td=""><td>69</td><td>SY1236</td><td>9445388</td><td>47.50750</td><td>-123.05750</td><td>0.00135</td><td>0.00113</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                  | 69 | SY1236 | 9445388 | 47.50750 | -123.05750 | 0.00135 | 0.00113 |        |
| 71SY5514944532647.60305-122.982220.003900.0037972SY1163944524647.76138-122.850000.002370.0007273SY1162944524647.76194-122.850000.002370.0008274SY1164944524647.76138-122.76380.016220.0078975SY0959944513347.74666-122.726380.016220.0078976TR2726944490048.11138-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null9TR0852048.08027-123.045270.000000.00000null80TR0851048.0800-123.045270.000000.00000null81TR0850048.05138-122.175550.000000.00000null82TR0186048.05361-122.92500.000000.0256585SY0782047.28250-122.92500.000000.0256586SY0274047.58416-122.362500.000000.0256585SY0273047.58194-122.362770.000000.0256590SY0270047.57916-122.353880.000000.0256591SY0269047.57500-122.354160.000000.0256592SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 | SY1238 | 9445388 | 47.49972 | -123.06055 | 0.00877 | 0.00865 |        |
| 72SY1163944524647.76138-122.850000.002370.0007273SY1162944524647.76194-122.850000.002370.0008274SY1164944524647.76138-122.850000.002370.0007275SY0959944513347.74666-122.726380.016220.0078976TR2726944490048.11138-122.751940.065690.0256578TR2693048.07916-123.044160.000000.0000079TR0852048.08027-123.045270.000000.0000070TR0851048.08027-123.045270.000000.0000080TR0851048.05138-122.175550.000000.0000081TR0850048.05361-122.175550.000000.0000083TR0184048.05361-122.175550.000000.0256585SY0782047.28333-122.922500.000000.0256586SY0274047.58416-122.362370.000000.0256587SY0273047.58194-122.362770.000000.0256589SY0271047.57833-122.362770.000000.0256590SY0270047.57916-122.353880.000000.0256591SY0269047.57916-122.353880.000000.0256592SY0268047.57500-122.354160.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71 | SY5514 | 9445326 | 47.60305 | -122.98222 | 0.00390 | 0.00379 |        |
| 73SY1162944524647.76194-122.850000.002370.0008274SY1164944524647.76138-122.850000.002370.0007275SY0959944513347.74666-122.726380.016220.0078976TR2726944490048.11138-122.761660.066370.0257677TR0559944490048.11583-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null79TR0852048.08027-123.045270.000000.00000null80TR0851048.08027-123.045270.000000.00000null81TR0850048.08027-123.045270.000000.00000null82TR0186048.05138-122.179160.000000.00000null83TR0184048.05361-122.175550.000000.0256585SY0782047.28250-122.922500.000000.0256586SY0274047.58416-122.362500.000000.0256587SY0273047.58416-122.362770.000000.0256588SY0271047.57833-122.362770.000000.0256590SY0270047.57444-122.353880.000000.0256591SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72 | SY1163 | 9445246 | 47.76138 | -122.85000 | 0.00237 | 0.00072 |        |
| 74SY1164944524647.76138-122.850000.002370.0007275SY0959944513347.74666-122.726380.016220.0078976TR2726944490048.11138-122.761660.066370.0257677TR0559944490048.11583-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null79TR0852048.08027-123.045270.000000.00000null80TR0851048.08007-123.045270.000000.00000null81TR0850048.05138-122.179160.000000.00000null82TR0186048.05361-122.175550.000000.0256585SY0782047.28250-122.922500.000000.0256586SY0274047.58416-122.362770.000000.0256588SY0272047.57833-122.362770.000000.0256589SY0271047.57843-122.362770.000000.0256590SY0270047.57916-122.353880.000000.0256591SY0269047.57900-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73 | SY1162 | 9445246 | 47.76194 | -122.85000 | 0.00237 | 0.00082 |        |
| 75SY0959944513347.74666-122.726380.016220.0078976TR2726944490048.11138-122.761660.066370.0257677TR0559944490048.11583-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null79TR0852048.08027-123.045270.000000.00000null80TR0851048.08027-123.045270.000000.00000null81TR0850048.08000-123.045270.000000.00000null82TR0186048.05138-122.179160.000000.00000null83TR0184048.05361-122.175550.000000.0256585SY0782047.28250-122.922500.000000.0256586SY0274047.58416-122.361380.000000.0256587SY0273047.58194-122.362770.000000.0256588SY0271047.57833-122.362770.000000.0256590SY0270047.57916-122.353880.000000.0256591SY0269047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74 | SY1164 | 9445246 | 47.76138 | -122.85000 | 0.00237 | 0.00072 |        |
| 76TR2726944490048.11138-122.761660.066370.0257677TR0559944490048.11583-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null79TR0852048.08027-123.045270.000000.00000null80TR0851048.08027-123.045270.000000.00000null81TR0850048.08000-123.045270.000000.00000null82TR0186048.05138-122.179160.000000.00000null83TR0184048.05361-122.175550.000000.02565null84SY0783047.28250-122.922500.000000.0256585SY0782047.58416-122.361380.000000.0256586SY0274047.58416-122.362500.000000.0256588SY0272047.57833-122.362770.000000.0256590SY0270047.57444-122.362770.000000.0256591SY0269047.57916-122.353880.000000.00000null92SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75 | SY0959 | 9445133 | 47.74666 | -122.72638 | 0.01622 | 0.00789 |        |
| 77TR0559944490048.11583-122.751940.065690.0256578TR2693048.07916-123.044160.000000.00000null79TR0852048.08027-123.045270.000000.00000null80TR0851048.08027-123.045270.000000.00000null81TR0850048.08000-123.045270.000000.00000null82TR0186048.05138-122.179160.000000.00000null83TR0184048.05361-122.175550.000000.0256585SY0782047.28333-122.923050.000000.0256586SY0274047.58416-122.361380.000000.0256587SY0273047.58194-122.362770.000000.0256588SY0271047.5733-122.362770.000000.0256590SY0270047.57916-122.353880.000000.0256591SY0269047.57500-122.354160.000000.0256592SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76 | TR2726 | 9444900 | 48.11138 | -122.76166 | 0.06637 | 0.02576 |        |
| 78TR2693048.07916-123.044160.000000.00000null79TR0852048.08027-123.045270.000000.00000null80TR0851048.08027-123.045270.000000.00000null81TR0850048.0800-123.045270.000000.00000null82TR0186048.05138-122.179160.000000.00000null83TR0184048.05361-122.175550.000000.0256585SY0782047.28250-122.922500.000000.0256586SY0274047.58416-122.362500.000000.0256587SY0273047.57833-122.362770.000000.0256589SY0271047.57444-122.362770.000000.0256590SY0269047.57916-122.353880.000000.0256591SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77 | TR0559 | 9444900 | 48.11583 | -122.75194 | 0.06569 | 0.02565 |        |
| 79 TR0852048.08027-123.045270.000000.00000null80 TR0851048.08027-123.045270.000000.00000null81 TR0850048.08000-123.045270.000000.00000null82 TR0186048.05138-122.179160.000000.00000null83 TR0184048.05361-122.175550.000000.00000null84 SY0783047.28250-122.922500.000000.0256585 SY0782047.58416-122.361380.000000.0256586 SY0274047.58416-122.362500.000000.0256587 SY0273047.58416-122.362770.000000.0256588 SY0272047.57833-122.362770.000000.0256590 SY0270047.57916-122.353880.000000.0256591 SY0269047.57916-122.3534160.000000.0256592 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78 | TR2693 | 0       | 48.07916 | -123.04416 | 0.0000  | 0.00000 | null   |
| 80 TR0851048.08027-123.045270.000000.00000null81 TR0850048.08000-123.045270.000000.00000null82 TR0186048.05138-122.179160.000000.00000null83 TR0184048.05361-122.175550.000000.00000null84 SY0783047.28250-122.922500.000000.0256585 SY0782047.58416-122.361380.000000.0256586 SY0274047.58416-122.362500.000000.0256587 SY0273047.58194-122.362770.000000.0256589 SY0271047.57833-122.362770.000000.0256590 SY0270047.57916-122.353880.000000.0256591 SY0269047.57500-122.354160.000000.0256592 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79 | TR0852 | 0       | 48.08027 | -123.04527 | 0.00000 | 0.00000 | null   |
| 81 TR0850048.08000-123.045270.000000.00000null82 TR0186048.05138-122.179160.000000.00000null83 TR0184048.05361-122.175550.000000.00000null84 SY0783047.28250-122.922500.000000.0256585 SY0782047.28333-122.923050.000000.0256586 SY0274047.58416-122.361380.000000.0256587 SY0273047.58194-122.362770.000000.0256588 SY0272047.57833-122.362770.000000.0256590 SY0270047.57444-122.362770.000000.0256591 SY0269047.57916-122.353880.000000.0256592 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80 | TR0851 | 0       | 48.08027 | -123.04527 | 0.0000  | 0.00000 | null   |
| 82 TR0186048.05138-122.179160.000000.00000null83 TR0184048.05361-122.175550.000000.00000null84 SY0783047.28250-122.922500.000000.0256585 SY0782047.28333-122.923050.000000.0256586 SY0274047.58416-122.361380.000000.0256587 SY0273047.58416-122.362500.000000.0256588 SY0272047.58194-122.362770.000000.0256590 SY0270047.57444-122.362770.000000.0256591 SY0269047.57916-122.353880.000000.0256592 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81 | TR0850 | 0       | 48.08000 | -123.04527 | 0.00000 | 0.00000 | null   |
| 83 TR0184048.05361-122.175550.000000.00000null84 SY0783047.28250-122.922500.000000.0256585 SY0782047.28333-122.923050.000000.0256586 SY0274047.58416-122.361380.000000.0256587 SY0273047.58494-122.362500.000000.0256588 SY0272047.57833-122.362770.000000.0256590 SY0270047.57444-122.362770.000000.0256591 SY0269047.57916-122.353880.000000.0256592 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82 | TR0186 | 0       | 48.05138 | -122.17916 | 0.0000  | 0.00000 | null   |
| 84SY0783047.28250-122.922500.000000.0256585SY0782047.28333-122.923050.000000.0256586SY0274047.58416-122.361380.000000.0256587SY0273047.58416-122.362500.000000.0256588SY0272047.58194-122.362770.000000.0256589SY0271047.57833-122.362770.000000.0256590SY0270047.57444-122.362770.000000.0256591SY0269047.57916-122.353880.000000.0256592SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83 | TR0184 | 0       | 48.05361 | -122.17555 | 0.00000 | 0.00000 | null   |
| 85SY0782047.28333-122.923050.000000.0256586SY0274047.58416-122.361380.000000.0256587SY0273047.58416-122.362500.000000.0256588SY0272047.58194-122.362770.000000.0256589SY0271047.57833-122.362770.000000.0256590SY0270047.57444-122.362770.000000.0256591SY0269047.57916-122.353880.000000.00000null92SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 84 | SY0783 | 0       | 47.28250 | -122.92250 | 0.0000  | 0.02565 |        |
| 86SY0274047.58416-122.361380.000000.0256587SY0273047.58416-122.362500.000000.0256588SY0272047.58194-122.362770.000000.0256589SY0271047.57833-122.362770.000000.0256590SY0270047.57916-122.362770.000000.0256591SY0269047.57916-122.353880.000000.00000null92SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85 | SY0782 | 0       | 47.28333 | -122.92305 | 0.0000  | 0.02565 |        |
| 87 SY0273047.58416-122.362500.000000.0256588 SY0272047.58194-122.362770.000000.0256589 SY0271047.57833-122.362770.000000.0256590 SY0270047.57444-122.362770.000000.0256591 SY0269047.57916-122.353880.000000.00000null92 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86 | SY0274 | 0       | 47.58416 | -122.36138 | 0.00000 | 0.02565 |        |
| 88SY0272047.58194-122.362770.000000.0256589SY0271047.57833-122.362770.000000.0256590SY0270047.57444-122.362770.000000.0256591SY0269047.57916-122.353880.000000.00000null92SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87 | SY0273 | 0       | 47.58416 | -122.36250 | 0.00000 | 0.02565 |        |
| 89 SY0271047.57833-122.362770.000000.0256590 SY0270047.57444-122.362770.000000.0256591 SY0269047.57916-122.353880.000000.00000null92 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88 | SY0272 | 0       | 47.58194 | -122.36277 | 0.0000  | 0.02565 |        |
| 90 SY0270047.57444-122.362770.000000.0256591 SY0269047.57916-122.353880.000000.00000null92 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89 | SY0271 | 0       | 47.57833 | -122.36277 | 0.0000  | 0.02565 |        |
| 91 SY0269047.57916-122.353880.000000.00000null92 SY0268047.57500-122.354160.000000.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 90 | SY0270 | 0       | 47.57444 | -122.36277 | 0.00000 | 0.02565 |        |
| 92 SY0268 0 47.57500 -122.35416 0.00000 0.02565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 91 | SY0269 | 0       | 47.57916 | -122.35388 | 0.00000 | 0.00000 | null   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 92 | SY0268 | 0       | 47.57500 | -122.35416 | 0.00000 | 0.02565 |        |

## Table E.1 (Continued).

| 93 SY0267 | 0 | 47.57888 -122.35444 | 0.00000 | 0.00000 | null |
|-----------|---|---------------------|---------|---------|------|
| 94 SY0266 | 0 | 47.57694 -122.35500 | 0.00000 | 0.00000 | null |
| 95 SY0265 | 0 | 47.57111 -122.34472 | 0.00000 | 0.02565 |      |
|           |   |                     |         |         |      |

error summary

| 202 00 |        |           |   |         |    |    |    |
|--------|--------|-----------|---|---------|----|----|----|
| nun    | ıber   | number    | = | 67      |    |    |    |
| avo    | . rmse | avg. rmse | = | 0.00587 |    |    |    |
| avo    | g. std | avg. std  | = | 0.00627 |    |    |    |
| max    | . rmse | max. rmse | = | 0.06637 | at | i= | 76 |
| max    | . std  | max. std  | = | 0.02576 | at | i= | 76 |